【正文】
mamskii hydraulic works, Are q = 。強(qiáng)行配置一個(gè)旋流泄,是一個(gè)水利工程決定性的 條件 。改造旋渦狀流入軸向流發(fā)生 。作為 nonaerated流進(jìn)入尾管通過(guò)旋轉(zhuǎn)的節(jié)點(diǎn),一個(gè)真空計(jì)壓力是建立在燃?xì)庹羝暮诵?,并在案件高度曝?。液壓研究進(jìn)行了一個(gè)模型,模擬了豎井溢洪道在 1 : 50的比例和包括一個(gè)軸測(cè)量直徑 13米,高 148米,切渦流產(chǎn)生裝置,和尾水隧洞??紤]到這些差異的基礎(chǔ)上的結(jié)果,實(shí)驗(yàn)室研究工作的rogunskii溢洪道水力發(fā)電廠(包括消能室)和溢洪道的水力工程(,泰瑞經(jīng)營(yíng)著 均勻 的能量耗散整個(gè)隧道的長(zhǎng)度 )。情況是不同的,在案件的摻氣水流,這也是難以模型。 整體寬度的隧道被確定類型的溢洪道設(shè)計(jì)和選擇整體寬度的隧道被確定類型的溢洪道設(shè)計(jì)和選擇 。 對(duì)渦流產(chǎn)生裝置的設(shè)計(jì)。 渦流產(chǎn)生裝置。 評(píng)價(jià)設(shè)計(jì)溢洪道 的尺寸 。終端部分尾水洞渦流溢洪道可以構(gòu)造的形式,一個(gè)挑斗,消力池,或特殊結(jié)構(gòu)取決于流量的出口從隧道和條件的 下游航道。一方面,這些類型的溢洪道 可能大規(guī)模的耗散的動(dòng)能的流動(dòng)的 尾段 。諾維科娃, V . B .羅季奧諾夫,和 NN羅薩娜娃 隧道式溢洪道,廣泛應(yīng)用于中、高壓液壓工程。 這些結(jié)構(gòu)可能是分為以下基本組: 渦旋式(或所謂的 singlevortex型)與光滑溢洪道水流的消能在隧道的長(zhǎng)度時(shí)的研究的直徑和高度的隧道;參看。 模型調(diào)查手段,因?yàn)樗匀皇遣豢赡茉u(píng)估所有的因素 的操作溢洪道計(jì)算方式。軸(垂直或傾斜)?;咎攸c(diǎn)是 一個(gè)渦流發(fā)生器在鋼筋混凝土是距離隧道軸線為重心的 “關(guān)鍵 ”的部分地區(qū)。mamskii水利工程, Areq =;并為 rogunskii溢洪道,應(yīng) 安排為 : Areq =。對(duì)尾水隧洞,最好的方法是使用一個(gè)漸縮管(或圓柱)段為共軛 條件 之間的切向渦 輪 發(fā)電機(jī)和消能室。建立一個(gè)可靠的模型vortextype當(dāng)有一個(gè)自由的水平在莖軸和 多余的 的空氣的流動(dòng),它是必要的隔離該地區(qū)的空氣在上部和下部的 區(qū)域 ,從外部環(huán)境,在這些地區(qū)減少空氣壓力根據(jù)幾何尺度建立一個(gè)真空的模型。在 這 個(gè) 研究中 , 為了 彎曲的轉(zhuǎn)折段,傳統(tǒng)配置一個(gè)豎井溢洪道取而代之的是一個(gè)切向流渦流發(fā)生器。穩(wěn)定旋渦流動(dòng)與周圍的 水環(huán)境 和內(nèi)部氣體 , 核心是形成超越切渦流發(fā)生器。 一個(gè) 專用 的建筑,是提出了在本文章的存在是一個(gè)能量耗散腔中的渦旋式 水流 突然膨脹,迅速轉(zhuǎn)化為軸向流動(dòng)放電流量從尾水隧洞直接進(jìn)入大氣層。系統(tǒng)的越來(lái)越多的能量耗散 。 spillways with two or more interacting vortextype flows in energydissipation discharge chambers [8] or in special energy dissipators that have been termed countervortex energy dissipators [2, 4]. The terminal portion of the tailrace tunnel of a vortex spillway may be constructed in the form of a skijump bucket, a stilling basin, or special structures depending on the flow rate at the exit from the tunnel and on the conditions in the channel downstream. The hydraulic system used to link the flow to the tailrace canal may involve the use of either overflowtype or freefall type structures. Vortex spillways with smooth or accelerated [7] dissipation of energy over the entire length of the water conduit represent the simplest and most promising types of hydraulic structures. Techniques of designing vortex spillways have now been developed and published in numerous studies [2, 7, 8]。 moreover, the lower the level of the water surface, the more the air restrained the water flow and transformed the flow into a rotation node (Fig. 7). Stable vortextype flow with a peripheral water ring and internal gasvapor core is formed beyond the tangential vortex generator. Due to asymmetric delivery of water into the vortex generator in the initial segments, the core of the flow is noncircular and situated away from the center of the cross section. Throughout the length of the initial cylindrical segment of the conduit, the gasvapor core possesses a wavelike curved axis which coincides with the axis of the tunnel even as close as 10dx from the axis of the shaft. As nonaerated flow enters the tailrace conduit through the rotation node, a vacuumgauge pressure is established in the gasvapor core, and in the case of highly aerated flow, gauge pressure, The reduction in pressure in the gasvapor core is associated with the effect of centrifugal forces in vortextype flow, while an increase in pressure is associated with nearly plete release of air from the aerated flow into the core induced by the transport of air bubbles from the periphery to the center under the effect of the pressure gradient. For a tailrace conduit with cylindrical initial segment, the free area downstream increases from in the section at a distance from the axis of the shaft to in the section at a distance , while the angle of flow rotation and the axial and circumferential flow rates all decrease. In the case of a conical initial segment, the relative area of the gasvapor core decreases from to over the length of the conical segment, while the angle of flow rotation decreases to between onehalf and