【摘要】高中數(shù)學(xué)必修一冪函數(shù)教案教學(xué)目標(biāo):知識(shí)與技能通過具體實(shí)例了解冪函數(shù)的圖象和性質(zhì),并能進(jìn)行簡單的應(yīng)用.過程與方法能夠類比研究一般函數(shù)、指數(shù)函數(shù)、對(duì)數(shù)函數(shù)的過程與方法,來研究冪函數(shù)的圖象和性質(zhì).情感、態(tài)度、價(jià)值觀體會(huì)冪函數(shù)的變化規(guī)律及蘊(yùn)含其中的對(duì)稱性.教學(xué)重點(diǎn):重點(diǎn)從五個(gè)具體冪函數(shù)中認(rèn)識(shí)冪函數(shù)的一些性質(zhì).難點(diǎn)畫五個(gè)具體冪函數(shù)的圖象并由圖象概括其性質(zhì),
2025-08-05 18:17
【摘要】(滿分:150分考試時(shí)間:120分鐘)一、選擇題:本大題共12小題。每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)是偶函數(shù),則函數(shù)的對(duì)稱軸是()A.B.C.D.2.已知,則函數(shù)的圖象不經(jīng)過()A.第一象限B.第二象限C.第三象限D(zhuǎn).
2025-06-27 17:17
【摘要】1、二次函數(shù)1已知二次函數(shù),不等式的解集為.(Ⅰ)若方程有兩個(gè)相等的實(shí)根,求的解析式;(Ⅱ)若的最大值為正數(shù),求實(shí)數(shù)的取值范圍.1、解:(Ⅰ)∵不等式的解集為∴和是方程的兩根∴∴又方
2025-01-15 09:39
【摘要】函數(shù)極限的運(yùn)算規(guī)則前面已經(jīng)學(xué)習(xí)了數(shù)列極限的運(yùn)算規(guī)則,我們知道數(shù)列可作為一類特殊的函數(shù),故函數(shù)極限的運(yùn)算規(guī)則與數(shù)列極限的運(yùn)算規(guī)則相似。⑴、函數(shù)極限的運(yùn)算規(guī)則??若已知x→x0(或x→∞)時(shí),.則:????????????
2025-08-05 19:28
【摘要】高中數(shù)學(xué)函數(shù)知識(shí)點(diǎn)總結(jié)1.對(duì)于集合,一定要抓住集合的代表元素,及元素的“確定性、互異性、無序性”。2進(jìn)行集合的交、并、補(bǔ)運(yùn)算時(shí),不要忘記集合本身和空集的特殊情況注重借助于數(shù)軸和文氏圖解集合問題??占且磺屑系淖蛹且磺蟹强占系恼孀蛹?。3.注意下列性質(zhì):要知道它的來歷:若B為A的子集,則對(duì)于元素a1
2025-08-05 18:38
【摘要】高中數(shù)學(xué)知識(shí)點(diǎn)總結(jié)第二章基本初等函數(shù)(Ⅰ)〖〗指數(shù)函數(shù)【】指數(shù)與指數(shù)冪的運(yùn)算(1)根式的概念①如果,且,那么叫做的次方根.當(dāng)是奇數(shù)時(shí),的次方根用符號(hào)表示;當(dāng)是偶數(shù)時(shí),正數(shù)的正的次方根用符號(hào)表示,負(fù)的次方根用符號(hào)表示;0的次方根是0;負(fù)數(shù)沒有次方根.②式子叫做根式,這里叫做根指數(shù),叫做被開方數(shù).當(dāng)為奇數(shù)時(shí),為任意實(shí)數(shù);當(dāng)為偶數(shù)時(shí),.③根式的性質(zhì):;當(dāng)為奇
2025-04-04 05:12
【摘要】函數(shù)的周期性一、周期函數(shù)的定義對(duì)于函數(shù),如果存在一個(gè)非零常數(shù),使得當(dāng)取定義域內(nèi)的每一個(gè)值時(shí),都有,那么函數(shù)就叫做周期函數(shù),非零常數(shù)叫做這個(gè)函數(shù)的周期。說明:(1)必須是常數(shù),且不為零;(2)對(duì)周期函數(shù)來說必須對(duì)定義域內(nèi)的任意都成立。二、常見函數(shù)的最小正周期正弦函數(shù)y=sin(ωx+φ)(w0)最小正周期為T=y=cos(ωx+φ)(w>
2025-08-08 19:39
【摘要】(專題一)函數(shù)圖像變換函數(shù)圖像畫法的基本原理變換作圖法1平移方法:向右平移個(gè)單位長度方法:向上平移個(gè)單位長度2對(duì)稱(關(guān)于軸對(duì)稱)(關(guān)于軸對(duì)稱)(關(guān)于原點(diǎn)對(duì)稱)3其他先畫圖,保留軸上方部分,再把軸下方圖沿軸對(duì)折到上方先畫圖,保留軸右方圖像,再把軸右方圖像沿軸對(duì)折典型題型1做出的圖像變式練習(xí)
2025-04-04 05:11
【摘要】§冪函數(shù)一、基礎(chǔ)過關(guān)1.下列結(jié)論錯(cuò)誤的個(gè)數(shù)為________.①冪函數(shù)圖象一定過原點(diǎn);②當(dāng)α1時(shí),冪函數(shù)y=xα是增函數(shù);④函數(shù)y=x2既是二次函數(shù),也是冪函數(shù).2.在函數(shù)y=1x2,y=2x2,y=x2+
2024-12-08 05:55
【摘要】互助縣2013屆高三“一診”數(shù)學(xué)試卷分析一、試卷分析作為第一次高三統(tǒng)一檢測試題,本試卷整體結(jié)構(gòu)及難度分布合理,貼近全國卷試題,著重考查基礎(chǔ)知識(shí)、基本技能、基本方法(包括基本運(yùn)算)和數(shù)學(xué)基本思想,對(duì)重點(diǎn)知識(shí)作了重點(diǎn)考查,主要檢測學(xué)生對(duì)基本知識(shí)的掌握以及解題的一些通性通法。試題力求創(chuàng)新。理科和文科試題中有不少新題。這些題目,雖然素材大都源于教材,但并不是對(duì)教材的原題照搬,而是通過提煉、綜合、
2025-06-07 23:58
【摘要】經(jīng)典函數(shù)測試題及答案(滿分:150分考試時(shí)間:120分鐘)一、選擇題:本大題共12小題。每小題5分,共60分。在每小題給出的四個(gè)選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.函數(shù)是偶函數(shù),則函數(shù)的對(duì)稱軸是()A.B.C.D.2.已知,則函數(shù)的圖象不經(jīng)過()A.第一象限B.第二象限
2025-06-18 13:53
【摘要】高中導(dǎo)數(shù)與函數(shù)知識(shí)點(diǎn)總結(jié)歸納一、基本概念1.導(dǎo)數(shù)的定義:設(shè)是函數(shù)定義域的一點(diǎn),如果自變量在處有增量,則函數(shù)值也引起相應(yīng)的增量;比值稱為函數(shù)在點(diǎn)到之間的平均變化率;如果極限存在,則稱函數(shù)在點(diǎn)處可導(dǎo),并把這個(gè)極限叫做在處的導(dǎo)數(shù)。在點(diǎn)處的導(dǎo)數(shù)記作2導(dǎo)數(shù)的幾何意義:(求函數(shù)在某點(diǎn)處的切線方程)函數(shù)在點(diǎn)處的導(dǎo)數(shù)的幾何意義就是曲線在點(diǎn)處的切線的斜率,也就是說,曲線在點(diǎn)P處的切
2025-04-04 05:08
【摘要】新課程高中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計(jì)與案例高中數(shù)學(xué)優(yōu)秀教學(xué)設(shè)計(jì)與案例(1)通過教師的適當(dāng)引導(dǎo)和學(xué)生的自主學(xué)習(xí),使學(xué)生由直觀感知、獲得猜想,經(jīng)過邏輯論證,推導(dǎo)出直線與平面平行的性質(zhì)定理,并掌握這一定理;(2)通過直線與平面平行的性質(zhì)定理的實(shí)際應(yīng)用,讓學(xué)生體會(huì)定理的現(xiàn)實(shí)意義與重要性;(3)通過命題的證明,讓學(xué)生體會(huì)解決立體幾何問題的重要思想方法——化歸思想,培養(yǎng)、提高學(xué)生分析、
2025-05-01 23:46
【摘要】《思躍理科》內(nèi)部資料——總結(jié)人:liyongxybOf(x)=b常見函數(shù)性質(zhì)匯總常數(shù)函數(shù)f(x)=b(b∈R)圖象及其性質(zhì):函數(shù)f(x)的圖象是平行于x軸或與x軸重合(垂直于y軸)的直線xyOf(x)=kx+b一次函數(shù)f(x)=kx+b(k≠0,b∈R)|k|越大,圖象越陡;|k|越小,圖象越平緩;圖象及
2025-04-04 05:07
【摘要】第一篇:高中數(shù)學(xué)重難點(diǎn)分析和高中數(shù)學(xué)學(xué)習(xí)方法 星火教育佛山分公司 高中數(shù)學(xué)重點(diǎn)難點(diǎn)分析: 主干知識(shí)七大塊 (1)函數(shù)與導(dǎo)數(shù)(及其應(yīng)用);(2)不等式(解法、證明及應(yīng)用,這部分不會(huì)單獨(dú)命題,常以...
2024-11-15 07:04