【摘要】1.函數(shù)的單調(diào)性(1)利用導(dǎo)數(shù)的符號判斷函數(shù)的增減性注意:在某個區(qū)間內(nèi),f39。(x)>0是f(x)在此區(qū)間上為增函數(shù)的充分條件,而不是必要條件,如f(x)=x3在R內(nèi)是增函數(shù),但x=0時f39。(x)=0。也就是說,如果已知f(x)為增函數(shù),解題時就必須寫f39。(x)≥0。(2)求函數(shù)單調(diào)區(qū)間的步驟①確定f(x)的定義域;
2024-12-17 15:20
【摘要】A級 課時對點練(時間:40分鐘 滿分:70分)一、填空題(每小題5分,共40分)1.函數(shù)f(x)=(x-3)ex的單調(diào)遞增區(qū)間是________.解析:f′(x)=(x-3)′ex+(x-3)(ex)′=(x-2)ex,令f′(x)0,解得x2.答案:(2,+∞)2.已知函數(shù)f(x)=-(4m-1)x2+(15m2-2m-7)x+2在實數(shù)集R
2025-08-21 16:19
【摘要】45高考總復(fù)習(xí)——導(dǎo)數(shù)及其應(yīng)用(題目含答案全解全析)Zq張強(qiáng)sky整理【考點闡釋】《考試說明》要求:了解導(dǎo)數(shù)概念的實際背景,理解導(dǎo)數(shù)的幾何意義,能根據(jù)定義求幾個簡單函數(shù)的導(dǎo)數(shù),能利用導(dǎo)數(shù)公式表及導(dǎo)數(shù)的四則運(yùn)算法則求簡單函數(shù)的導(dǎo)數(shù)。本節(jié)的能級要求為導(dǎo)數(shù)的概念A(yù)級,其余為B級?!靖呖俭w驗】一、課前
2025-01-11 01:04
【摘要】第二章函數(shù)與基本初等函數(shù)第二章第三節(jié)導(dǎo)數(shù)在函數(shù)最值及生活實際中的應(yīng)用高考目標(biāo)導(dǎo)航課前自主導(dǎo)學(xué)課堂典例講練3課后強(qiáng)化作業(yè)4高考目標(biāo)導(dǎo)航考綱要求1.會求閉區(qū)間上函數(shù)的最大值、最小值(其中多項式函數(shù)一般不超過三次).2.會利用導(dǎo)數(shù)解決某些實際問題.命題分析
2024-11-18 18:07
【摘要】第二講微積分基本公式?內(nèi)容提要1.變上限的定積分;-萊布尼茲公式。?教學(xué)要求;-萊布尼茲公式。?21)(TTdttv)()(12TsTs?一、變上限的定積分).()()(1221TsTsdttvTT????).()(tvts??其中一般地,若?
2025-05-15 01:35
【摘要】考點13定積分與微積分基本定理(1)了解定積分的實際背景,了解定積分的基本思想,了解定積分的概念.(2)了解微積分基本定理的含義.一、定積分1.曲邊梯形的面積(1)曲邊梯形:由直線x=a、x=b(a≠b)、y=0和曲線所圍成的圖形稱為曲邊梯形(如圖①).(2)求曲邊梯形面積的方法與步驟:①分割:把區(qū)間a,b]分成許多小區(qū)間,進(jìn)而把曲邊梯形拆分為一些小曲邊
2025-04-16 08:25
【摘要】返回后頁前頁返回后頁前頁§5微積分學(xué)基本定理一、變限積分與原函數(shù)的存在性本節(jié)將介紹微積分學(xué)基本定理,并用以證明連續(xù)函數(shù)的原函數(shù)的存在性.在此基礎(chǔ)上又可導(dǎo)出定積分的換元積分法與分部積分法.三、泰勒公式的積分型余項二、換元積分法與分部積分法返回返回后頁前頁返回后頁前頁
2025-08-20 09:08
【摘要】第四章定積分§定積分的概念學(xué)習(xí)目標(biāo)思維脈絡(luò)1.了解曲邊梯形的面積求法.2.理解“分割、近似代替、求和、取極限”的數(shù)學(xué)思想.3.掌握定積分的概念,并會用定義求定積分.4.理解定積分的幾何意義和定積分的基本性質(zhì).1231.定積分的
2024-11-18 13:32
【摘要】考研數(shù)學(xué)沖刺定積分復(fù)習(xí)的要點 考研數(shù)學(xué)沖刺定積分復(fù)習(xí)的三個要點 1、復(fù)習(xí)知識體系 在講定積分的時候,我又回歸到原來的講法:從知識體系講起。因為定積分這章非常重要,考試考查的內(nèi)容多...
2025-04-14 02:49
【摘要】2設(shè)函數(shù))(xu、)(xv在區(qū)間??ba,上具有連續(xù)導(dǎo)數(shù),則有??????bababavduuvudv.定積分的分部積分公式推導(dǎo)??,vuvuuv???????,)(babauvdxuv?????,??????bababadxvudxvu
2025-05-11 04:24
【摘要】第四節(jié)高階導(dǎo)數(shù)引例:變速直線運(yùn)動),(tss?)()(tstv??則瞬時速度為的變化率對時間是速度加速度tva?.])([)()(??????tstvta定義.)())((,)()(lim))((,)()(0處的二階導(dǎo)數(shù)在點為函數(shù)則稱存在即處可導(dǎo)在點的導(dǎo)數(shù)如果函數(shù)xxfxfxxfxxfxf
2025-04-21 04:25
【摘要】返回后頁前頁顯然,按定義計算定積分非常困難,§2牛頓-萊布尼茨公式須尋找新的途徑計算定積分.在本節(jié)中,介紹牛頓-萊布尼茨公式,從而建立了定積分與不定積分之間的聯(lián)系,大大簡化了定積分的計算.返回返回后頁前頁若質(zhì)點以速度v=v(t)作變速直線運(yùn)動,由定積分(
2025-08-20 09:07
【摘要】?一定積分的概念?二定積分的簡單性質(zhì)?三定積分的計算?四定積分的應(yīng)用?五廣義積分和Γ函數(shù)第五章定積分及其應(yīng)用背景來源——面積的計算!矩形的面積定義為兩直角邊長度的乘積?一般圖形的面積是什么我們可以用大大小小的矩形將圖形不斷填充,但閃爍部分永遠(yuǎn)
2025-07-17 23:32
【摘要】第4講定積分與微積分的基本定理★知識梳理★1、定積分概念定積分定義:如果函數(shù)在區(qū)間上連續(xù),用分點,將區(qū)間等分成幾個小區(qū)間,在每一個小區(qū)間上任取一點,作和,當(dāng)時,上述和無限接近某個常數(shù),這個常數(shù)叫做函數(shù)在區(qū)間上的定積分,記作,即,這里、分別叫做積分的下限與上限,區(qū)間叫做積分區(qū)間,函數(shù)叫做被積函數(shù),叫做積分變量,叫做被積式.2、定積分性質(zhì)(1);
2025-08-17 05:56
【摘要】微積分公式與定積分計算練習(xí)(附加三角函數(shù)公式)一、基本導(dǎo)數(shù)公式⑴⑵⑶⑷⑸⑹⑺⑻⑼⑽⑾⑿⒀⒁⒂⒃⒄⒅二、導(dǎo)數(shù)的四則運(yùn)算法則三、高階導(dǎo)數(shù)的運(yùn)算法則(1)
2025-03-25 01:57