freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

完全平方公式與平方差公式教案-預覽頁

2024-11-04 22:29 上一頁面

下一頁面
 

【正文】 完全平方公式結(jié)構(gòu)特點及其應用。本節(jié)課通過學生合作學習,利用多項式相乘法則和圖形解釋而得到完全平方公式,進而理解和運用完全平方公式,對以后學習因式分解,解一元二次方程都具有舉足輕重的作用。.學生分組討論,最后總結(jié)。教學程序及教學內(nèi)容學生分組討論,合作交流,歸納完全平方公式的特征。3. 有些題目需要變形后才能用公式。教學重點:乘法公式的應用 教學難點:公式的結(jié)構(gòu)特征對公式中字母所表示的廣泛含義的理解和正確運用。b)2=a2177。教學目標:1. 知識與能力:會推導公式:(a177。3. 情感態(tài)度與價值觀:進一步體會數(shù)形結(jié)合的數(shù)學思想和方法。2. 要符合特征才能用公式。452與4(5+2):(1)4+5+2=4+(5+2)(2)452=4(5+2)左邊沒括號,右邊有括號,也就是添了括號,?同學們可不可以總結(jié)出添括號法則來呢? 添括號其實就是把去括號反過來。學生在做題時,不要鼓勵他們直接套用公式,而應讓學生理解每一步的運算理由。在此之前,學生已學習了多項式的乘法,這為過渡到本節(jié)的學習起著鋪墊作用。三、教學目標知識與技能。四、教學重點難點教學重點完全平方公式的推導過程;結(jié)構(gòu)特點與公式的應用。六、教學過程設計師生活動設計意圖多項式與多項式的乘法法則內(nèi)容。計算練習(1)課本110頁第一題(2) (x6)2 (y-5)2四、課堂小結(jié):應用完全平方公式應注意什么?在解題過程中要準確確定a和b,對照公式原形的兩邊, 做到不丟項、不弄錯符號、2ab時不能少乘以2。通過課堂練習,使學生掌握用完全平方公式計算的步驟,加強學生解題的準確率。 (4)(a-b)2.由上述計算,你發(fā)現(xiàn)了什么結(jié)論?二、合作探究探究點:完全平方公式【類型一】 直接運用完全平方公式進行計算利用完全平方公式計算:(1)(5-a)2;(2)(-3-4n)2;(3)(-3a+b)2.解析:直接運用完全平方公式進行計算即可.解:(1)(5-a)2=25-10a+a2;(2)(-3-4n)2=92+24n+16n2;(3)(-3a+b)2=9a2-6ab+b2.方法總結(jié):完全平方公式:(a177。60,∴=59或-61.方法總結(jié):兩數(shù)的平方和加上或減去它們積的2倍,就構(gòu)成了一個完全平方式.注意積的2倍的符號,避免漏解.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第4題【類型三】 運用完全平方公式進行簡便計算利用完全平方公式計算:(1)992。理解完全平方式的意義和特點,培養(yǎng)學生的判斷能力。教學過程設計一、復習1。把下列各式分解因式:(1)ax4-ax2 (2)16m4-n4。完全平方公式是:(a+b)2=a2+2ab+b2, (a-b)2=a2-2ab+b2。式子a2+2ab+b2及a2-2ab+b2叫做完全平方式,上面的兩個公式就是完全平方公式。答:(1)式是完全平方式。(2)不是完全平方式。5x 請同學們用箭頭表示完全平方公式中的a,b與多項式9x2+6xy+y2中的對應項,其中a=?b=?2ab=?答:完全平方公式為:其中a=3x,b=y,2ab=2分析:這個多項式是由三部分組成,第一項“25x4”是(5x2)的平方,第三項“1”是1的平方,第二項“10x2”是5x2與1的積的2倍。1+12=(5x2+1)2。1m+m2)= (4-m)2。下列各多項式是不是完全平方式?如果是,可以分解成什么式子?如果不是,請把多項式改變?yōu)橥耆椒绞?。答案?。(2)不是完全平方式,如果把第二項“4x”改為“6x”,原式變?yōu)?x2+6x+1,它是完全平方式。3。有時需要先把多項式經(jīng)過適當變形,得到一個完全平方式,然后再把它因式分解。(1)a2+8a+16; (2)1-4t+4t2;(3)m2-14m+49; (4)y2+y+1/4。(1)m2n-2mn+1; (2)7am+1-14am+7am-1;4。2。4。2。完全平方公式教案4教材分析1本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式以教材作為出發(fā)點,依據(jù)《數(shù)學課程標準》,引導學生體會、參與科學探究過程。用標準的數(shù)學語言得出結(jié)論,使學生感受科學的嚴謹,啟迪學習態(tài)度和方法。這節(jié)課的目的就是讓學生從等號的左邊形式和右邊形式之間的關(guān)系,總結(jié)出公式的應用方法。(四)解決問題:能結(jié)合具體情景發(fā)現(xiàn)并提出數(shù)學問題;嘗試從不同角度尋求解決問題的方法,并能有效地解決問題,嘗試評價不同方法之間的差異;通過對解決問題過程的反思,獲得解決問題的經(jīng)驗?!炊?、分析問題[學生回答]分組交流、討論(2m+3n)2= 4m2+12mn+9n2,(2m3n)2= 4m2+12mn+9n2,(2m3n)2= 4m212mn+9n2, (2m+3n)2= 4m212mn+9n2。(4)三項與原多項式中兩個單項式的關(guān)系。③ (2x+3)2 =_____________。⑦ (+n)2 =___________。(4)中間項是等號左邊兩項乘積的2倍。了解完全平方公式的幾何背景,培養(yǎng)學生的數(shù)形結(jié)合意識。教學過程:一、回顧與思考活動內(nèi)容:復習已學過的平方差公式平方差公式:(a+b)(a—b)=a2—b2;公式的結(jié)構(gòu)特點:左邊是兩個二項式的乘積,即兩數(shù)和與這兩數(shù)差的積。用不同的形式表示實驗田的總面積,并進行比較。分析完全平方公式的結(jié)構(gòu)特點,并用語言來描述完全平方公式。五、鞏固練習:下列各式中哪些可以運用完全平方公式計算。四、學習設計(一)預習準備(1)預習書p23—26(2)思考:和的平方等于平方的和嗎?6《完全平方公式》習題已知實數(shù)x、y都大于2,試比較這兩個數(shù)的積與這兩個數(shù)的和的大小,并說明理由。(3a—4b)2等于;答案:9a2—24ab+16b2解析:解答:(3a—4b)2=9a2—24ab+16b2分析:根據(jù)完全平方公式可完成此題。正方形AFME的邊長是 ,所以它的面積是 .從圖中可以看出正方形AEMF的面積等于正方形ABCD的面積減去兩個矩形DCGE和BCHF的面積再加上正方形HCGM的面積.也就是:(ab)2= .這也正好符合完全平方公式.:(1) (2)變式訓練:(1) (2)(3) (4)(x+5)2–(x2)(x3)(5)(x2)(x+2)(x+1)(x3) (6)(2xy)24(xy)(x+2y)拓展:(1)已知,則=(2)已知,求________,________(3)不論為任意有理數(shù),的值總是(1)已知,求和的值。完全平方公式教案8學習目標:會推導完全平方公式,并能用幾何圖形解釋公式。(三)試一試,我能行。即可.證明: ∵OE平分∠AOB,∴∠1=∠AOB,同理∠2=∠BOC,∴∠1+∠2=(∠AOB+∠BOC)=∠AOC=90176。學習重點:會推導完全平方公式,并能運用公式進行簡單的計算。完全平方公式的結(jié)構(gòu)特征:(a+b)2=a2+2ab+b2(ab)2=a22ab+b2左邊是 形式,右邊有三項,其中兩項是 形式,另一項是注意:公式中字母的含義廣泛,可以是 ,只要題目符合公式的結(jié)構(gòu)特征,就可以運用這一公式,可用符號表示為:(□177。:1. (a+b+c) =[a+(b+c)] =(a+b) +2(a+b)c+ c = a +2ab+b +2ac+2bc+c = a +b +c +2ab+2ac+2bc四、隨堂練習P38 1五、小結(jié)本節(jié)課進一步學習了完全平方公式,在應用此公式運算時注意以下幾點. ,不能出現(xiàn)(ab) = a b 的錯誤,或(ab) = a ab+b (漏掉2倍),可以把多項式的完全平方轉(zhuǎn)化為二項式的完全平方.六、作業(yè) P38 3.七、教后反思 整式的除法第一課時 ,了解單項式除法的意義.,、難點重點::單項式除以單項式法則的理解.完全平方公式教案12課題教案:完全平方公式學科:數(shù)學年級:七年級1內(nèi)容本節(jié)課的主題:通過一系列的探究活動,引導學生從計算結(jié)果中總結(jié)出完全平方公式的兩種形式。2教學目標:會推導完全平方公式,并能運用公式進行簡單的計算;了解(a+b)2=a2+2ab+b2的幾何背景。4教學難點掌握公式中字母表達式的意義及靈活運用公式進行計算。“問題情景—探究交流—得出結(jié)論—強化訓練”的模式展開教學。(2)結(jié)果的項數(shù)特點。、[學生回答]完全平方公式的數(shù)學表達式:(a+b)2=a2+2ab+b2;(ab)2=a22ab+b2.,解決問題:(搶答形式,活躍課堂氣氛,激發(fā)學生的學習積極性)(m+n)2=, (mn)2=,(m+n)2=, (mn)2=,①(x+y)2=。:你認為完全平方公式在應用過程中,需要注意那些問題?(1)公式右邊共有3項。[作業(yè)]P34隨堂練習P36習題完全平方公式教案13教學過程一、議一議探索單項式除以單項式法則(出示投影1)計算下列各題,并說說你的理由 1. x yx , (8m n )(2m n) , (a b c)(3a b).師生共同分析:此題是做除法運算,可以從兩方面思考:根據(jù)除法是乘法的逆運算,將除法問題轉(zhuǎn)化為乘法問題去解決,即( )x = x y,由單項式乘以單項式法則可得(x y)x = x y,因此,x yx =x y . 另外,根據(jù)同底數(shù)冪的除法法則,由約分也可得 =x :寫出(2)(3)題的結(jié)果. 教師板書: x yx =x y, (8m n )(2m n)=4n , (a b c)(3a b)= a bc師:以上運算是單項式除以單項式的運算,你能說說如何進行單項式除以單項式的運算?學生活動:小組討論,教師引導學生從系數(shù)、同底數(shù)冪、只在被除式含有的字母三方面思考,討論充分后,由一名同學敘述,(投影顯示)單項式相除,把系數(shù)、同底數(shù)冪分別相除后,作為商的因式。、 2. 3完全平方公式教案14總體說明:完全平方公式則是對多項式乘法中出現(xiàn)的較為特殊的算式的一種歸納、完全平方公式的推導是初中數(shù)學中運用推理方法進行代數(shù)式恒等變形的開端,通過完全平方公式的學習對簡化某些整式的運算、不僅對學生提高運算速度、準確率有較大作用,更是以后學習分解因式、分式運算、解一元二次方程以及二次函數(shù)的恒等變形的重要基礎,.本節(jié)是北師大版七年級數(shù)學下冊第一章《整式的運算》的第8小節(jié),占兩個課時,這是第一課時,它主要讓學生經(jīng)歷探索與推導完全平方公式的過程,培養(yǎng)學生的符號感與推理能力,讓學生進一步體會數(shù)形結(jié)合的思想在數(shù)學中的作用.一、學生學情分析學生的技能基礎:學生通過對本章前幾節(jié)課的學習,已經(jīng)學習了整式的概念、整式的加減、冪的運算、整式的乘法、平方差公式,這些基礎知識的學習為本節(jié)課的學習奠定了基礎.學生活動經(jīng)驗基礎:在平方差公式一節(jié)的學習中,學生已經(jīng)經(jīng)歷了探索和應用的過程,獲得了一些數(shù)學活動的經(jīng)驗,培養(yǎng)了一定的符號感和推理能力。完全平方公式結(jié)構(gòu)的認知及正確應用.四、教學設計分析本節(jié)課設計了十一個教學環(huán)節(jié):學生練習、暴露問題——驗證——推廣到一般情況,形成公式——數(shù)形結(jié)合——進一步拓廣——總結(jié)口訣——公式應用——學生反饋——學生PK——學生反思——鞏固練習.第一環(huán)節(jié):學生練習、暴露問題活動內(nèi)容:計算:(a+2)2設想學生的做法有以下幾種可能:①(a+2)2=a2+22②(a+2)2=a2+2a+22③正確做法。②公式中的a、b可以是任意一個代數(shù)式(數(shù)、字母、單項式、多項式)口訣:首平方,尾平方,首尾相乘的兩倍在中央.活動目的:認識完全平方公式的特征,總結(jié)出完全平方公式的口訣,便于學生理解與記憶,避免學生在應用該公式中出現(xiàn)錯誤.第七環(huán)節(jié):公式應用活動內(nèi)容:例:計算:①(2x–3)2。收獲2:了解了兩數(shù)和與兩數(shù)差的完全平方公式之間的差異。例如:a2+8a+16=a2+24a+42=(a+4)2a28a+16=a224a+42=(a4)2(要強調(diào)注意符號)首先我們來試一試:(投影:牛刀小試):(1)x2+8
點擊復制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1