【摘要】函數(shù)導(dǎo)數(shù)與不等式專題一.利用切線與導(dǎo)數(shù)之間的聯(lián)系解決不等式有關(guān)問題1.(2013年高考四川)已知函數(shù),其中是實(shí)數(shù).設(shè),為該函數(shù)圖象上的兩點(diǎn),且.(1)指出函數(shù)的單調(diào)區(qū)間;(2)若函數(shù)的圖象在點(diǎn)處的切線互相垂直,且,證明:;(3)若函數(shù)的圖象在點(diǎn)處的切線重合,求的取值范圍.2.(2014屆江西省新余)已知函數(shù),.(1)若曲
2025-03-24 12:16
【摘要】第一篇:用放縮法證明不等式 用放縮法證明不等式 蔣文利飛翔的青蛙 所謂放縮法就是利用不等式的傳遞性,對照證題目標(biāo)進(jìn)行合情合理的放大和縮小的過程,在使用放縮法證題時要注意放和縮的“度”,否則就不能...
2024-10-28 05:02
【摘要】不等式和不等式組錢旭東淮安市啟明外國語學(xué)校蘇科版義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書九年級復(fù)習(xí)課回顧·知識一元一次不等式(組)的應(yīng)用一元一次不等式(組)的解法一元一次不等式(組)解集的含義一元一次不等式(組)的概念不等式的性質(zhì)一元一次不等式和一元一次不等式組回顧·知識:含
2025-10-03 13:38
【摘要】第一篇:放縮法證明數(shù)列不等式 放縮法證明不等式 1、設(shè)數(shù)列{an}的前n項(xiàng)的和Sn= 43an- 13′ 2n n+ 1+ 3(n=1,2,3,L) n (Ⅰ)求首項(xiàng)a1與通項(xiàng)an...
2024-10-28 04:58
【摘要】第一篇:歸納法證明不等式 歸納法證明不等式 由于lnx0則x 1設(shè)f(x)=x-lnxf'(x)=1-1/x0 則f(x)為增函數(shù)f(x)f(1)=1 則xlnx 則可知道等式成...
2024-10-28 02:13
【摘要】第一篇:比較法證明不等式 比較法證明不等式 、最重要的方法之一,它是兩個實(shí)數(shù)大小順序和運(yùn)算性質(zhì)的直接應(yīng)用,比較法可分為差值比較法(簡稱為求差法)和商值比較法(簡稱為求商法)。 (1)差值比較法的...
2024-11-06 07:34
【摘要】第一篇:數(shù)列----利用函數(shù)證明數(shù)列不等式 數(shù)列已知數(shù)列{an}的前n項(xiàng)和為Sn,且a2an=S2+Sn對一切正整數(shù)n都成立。(Ⅰ)求a1,a2的值;(Ⅱ)設(shè)a10,數(shù)列{lg大值。 2已知數(shù)列...
2024-10-28 03:31
【摘要】第一篇:導(dǎo)數(shù)的應(yīng)用4——構(gòu)造函數(shù)證明數(shù)列不等式例題 導(dǎo)數(shù)的應(yīng)用 (四)——構(gòu)造函數(shù)證明數(shù)列不等式 例1(選講或練習(xí)):求證1111+++…+ln(1+n)234n+1 例2.已知函數(shù)f(x)...
2024-10-26 14:31
【摘要】例1、甲、乙兩電腦批發(fā)商每次在同一電腦耗材廠以相同價格購進(jìn)電腦芯片。甲、乙兩公司共購芯片兩次,每次的芯片價格不同,甲公司每次購10000片芯片,乙公司每次購10000元芯片,兩次購芯片,哪家公司平均成本低?請給出證明過程。分析:設(shè)第一、第二次購芯片的價格分別為每片a元和b元,列出甲、乙兩公司的平均價格,然后利用不等式知識論證。解:
2024-11-09 01:27
【摘要】第一篇:函數(shù)方程不等式教學(xué)反思(推薦) 函數(shù)、方程、不等式教學(xué)反思 -----汪輝 本節(jié)課用五個環(huán)節(jié)組織教學(xué)。環(huán)節(jié)一是知識的回顧,這部分復(fù)習(xí)了函數(shù)、方程、不等式的基礎(chǔ)知識,引入部分簡單過渡,激發(fā)...
2024-10-30 22:00
【摘要】不等式、方程與函數(shù)1.若不等式組有解,則a的取值范圍是()A.a(chǎn)≤3B.a(chǎn)<3C.a(chǎn)<2D.a(chǎn)≤22.若關(guān)于x的分式方程無解,則m的值為()A.B.1C.D.3.已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,下列說法錯誤的是()A.圖象關(guān)于直線x=1對稱
2025-06-24 01:44
【摘要】第六章不等式第二節(jié)不等式放縮技巧十法證明不等式,其基本方法參閱(下冊):不等式的放縮技巧。證明數(shù)列型不等式,因其思維跨度大、構(gòu)造性強(qiáng),需要有較高的放縮技巧而充滿思考性和挑戰(zhàn)性,能全面而綜合地考查學(xué)生的潛能與后繼學(xué)習(xí)能力,因而成為高考壓軸題及各級各類競賽試題命題的極好素材。這類問題的求解策略往往是:通過多角度觀察所給
2025-06-24 19:24
【摘要】不等式證明——分析法?教學(xué)目標(biāo)1.掌握分析法證明不等式;2.理解分析法實(shí)質(zhì)——執(zhí)果索因;3.提高證明不等式證法靈活性.?教學(xué)重點(diǎn)分析法?教學(xué)難點(diǎn)分析法實(shí)質(zhì)的理解導(dǎo)入新課[問題1]我們已經(jīng)學(xué)習(xí)了哪幾種不等式的證明方法?什么是比較法?什么是綜合法?[問題2]能否用比較法或綜
2025-08-05 01:24
【摘要】放縮法證明不等式一、放縮法原理 為了證明不等式,我們可以找一個或多個中間變量C作比較,即若能判定同時成立,那么顯然正確。所謂“放”即把A放大到C,再把C放大到B;反之,由B縮小經(jīng)過C而變到A,則稱為“縮”,統(tǒng)稱為放縮法。放縮是一種技巧性較強(qiáng)的不等變形,必須時刻注意放縮的跨度,做到“放不能過頭,縮不能不及”。二、常見的放縮法技巧 1、基本不等式、柯西不等式、排序不等式放縮2、糖
2025-03-25 02:44
【摘要】不等式與不等式組測試姓名__________學(xué)號____一、選擇題(每題4分,共32分)1.不等式axb?的解集是bxa?,那么a的取值范圍是???????()A.0a?B.0a?C.0a?D.0a?2.不等式2135xx???的正整數(shù)解的個數(shù)是??
2024-11-11 04:58