【摘要】第一篇:高中數學-三角函數公式 兩角和公式 sin(A+B)=sinAcosB+cosAsinBsin(A-B)=sinAcosB-cosAsinBcos(A+B)=cosAcosB-sinAsi...
2024-10-11 20:10
【摘要】三角函數的誘導公式【學習要求】1.了解三角函數的誘導公式的意義和作用.2.理解誘導公式的推導過程.3.能運用有關誘導公式解決一些三角函數的求值、化簡和證明問題.【學法指導】1.本節(jié)將要學習的誘導公式既是公式一的延續(xù),又是后繼學習內容的基礎,廣泛應用于求任意角的三角函數值以及有關三角函數的化簡、證明等問題.2.這組誘導公式的推導
2024-11-19 23:27
【摘要】18132213552)2sin(?????55?5525511954cos4sin???53)sina-cos(a-)cosa-sin(a???2572518257?2518?),,2(a(a2coscos????§三角函數求值【學習目標細解考綱】;
2024-12-02 08:37
【摘要】yOxαP(x,y)α的終邊P(x,y)α的終邊αyOx任意角的三角函數的定義xrMyMxryyOxαP(x,y)α的終邊P(x,y)α的終邊αyOxxrMyMxrysinyr
2024-08-14 18:30
【摘要】第一章三角函數正切函數的圖象與性質?α在第一象限時:?正弦線:sinα=MP0?余弦線:cosα=0M0?正切線:tanα=AT0α在第二象限時:正弦線:sinα=M’P’0余弦線:cosα=0M’0正切線:
2024-11-18 08:49
【摘要】三角函數第一教時教材:角的概念的推廣目的:要求學生掌握用“旋轉”定義角的概念,并進而理解“正角”“負角”“象限角”“終邊相同的角”的含義。過程:一、提出課題:“三角函數”回憶初中學過的“銳角三角函數”——它是利用直角三角形中兩邊的比值來定義的。相對于現(xiàn)在,我們研究的三角函數是“任意角的三角函數”,它對我們今后的學習和研究都起著十分重要的作用,并且在各門學科技術中都有
2025-04-17 12:37
【摘要】三角公式匯總一、任意角的三角函數在角的終邊上任取一點,記:,正弦:余弦:正切:余切:正割: 余割:注:我們還可以用單位圓中的有向線段表示任意角的三角函數:如圖,與單位圓有關的有向線段、、分別叫做角的正弦線、余弦線、正切線。二、同角三角函數的基本關系式倒數關系:,,。商數關系:,。平方關系:,,。三、誘導公式⑴、、、、的三角函數值,等于的
2025-04-04 05:05
【摘要】三角函數的誘導公式(二)一、填空題1.已知f(sinx)=cos3x,則f(cos10°)=________.2.若sin(3π+α)=-12,則cos??????7π2-α=________.3.已知sin??????α-π4=13,則cos??????π4+α=________.
2024-12-05 10:17
【摘要】高中數學三角函數復習專題一、知識點整理:1、角的概念的推廣:正負,范圍,象限角,坐標軸上的角;2、角的集合的表示:①終邊為一射線的角的集合:=②終邊為一直線的角的集合:;③兩射線介定的區(qū)域上的角的集合:④兩直線介定的區(qū)域上的角的集合:;3、任意角的三角函數:(1)弧長公式:R為圓弧的半徑,為圓心角弧度數,為弧長。(2)扇形的面積公式:
2025-04-17 12:54
【摘要】高中數學三角函數公式匯總一、任意角的三角函數在角的終邊上任取一點,記:,正弦:余弦:正切:余切:正割: 余割:注:我們還可以用單位圓中的有向線段表示任意角的三角函數:如圖,與單位圓有關的有向線段、、分別叫做角的正弦線、余弦線、正切線。二、同角三角函數的基本關系式倒數關系:,,。商數關系:,。平方關系:,,。三、誘導公式⑴、、、、的三
2024-08-01 07:48
【摘要】三角函數的誘導公式(一)一、填空題1.sin585°的值為________.2.若n為整數,則代數式nπ+αnπ+α的化簡結果是________.3.若cos(π+α)=-12,32πα2π,則sin(2π+α)=________.4.化簡:-α+α-π-
【摘要】專題復習三角函數一三角函數的概念一、知識要點:1、角:角可以看成平面內一條射線繞著端點從一個位置旋轉另一個位置所成的圖形。按逆時針方向旋轉所形的角叫做_____;按順時針方向旋轉所形成的角叫做_____。2、象限角:使角的頂點與原點重合,角的始邊與軸的非負半軸重合.角的終邊落在第幾象限,就說這個角是第幾象限角。象限角的集合為:第一象限角:第二象限角:第三象限角
2025-04-17 13:03
【摘要】高中數學必修4知識點總結第一章三角函數2、象限角:角的頂點與原點重合,角的始邊與軸的非負半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標軸上的角的集合為3、終邊相等的角:與角終邊相同的角的集合為4、已知是第幾象限角,確
2024-07-31 23:52
【摘要】同角三角函數的關系(2)【學習目標】1、能用同角三角函數關系解決簡單的計算、化簡與證明2、掌握“知一求二”的問題【重點難點】奇次式的處理方法和“知一求二”的問題【自主學習】一、復習回顧1、同角三角函數的兩個基本關系式:2、??????cossin,cossin,c
【摘要】同角三角函數的關系(1)【學習目標】1、掌握同角三角函數的兩個基本關系式2、能準確應用同角三角函數關系進行化簡、求值3、對于同角三角函數來說,認清什么叫“同角”,學會運用整體觀點看待角4、結合三角函數值的符號問題,求三角函數值【重點難點】同角三角函數的兩個基本關系式和應用【自主學習】一、數學
2024-11-20 01:06