【摘要】1.直線與平面平行的判定①判定定理:如果平面外一條直線和這個(gè)平面內(nèi)一條直線平行,那么這條直線和這個(gè)平面平行???面∥,面,∥aabba???②面面平行的性質(zhì):若兩個(gè)平面平行,則其中一個(gè)平面內(nèi)的任何直線與另一個(gè)平面平行。????∥,,∥aa??2.直線和平面垂直的判定①判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這條直
2025-01-09 21:42
【摘要】立體幾何練習(xí)題1.四棱錐中,底面為平行四邊形,側(cè)面面,已知,,,.(1)設(shè)平面與平面的交線為,求證:;(2)求證:;(3)求直線與面所成角的正弦值.2.如圖,在四棱錐P-ABCD中,底面ABCD是平行四邊形,,AD=AC=1,O為AC的中點(diǎn),PO平面ABCD,PO=2,M為PD的中點(diǎn)。(1)證明:PB//平面ACM;(2)證明:AD平面PAC
2025-03-25 06:43
【摘要】立體幾何體積問(wèn)題1、在如圖所示的五面體中,四邊形為菱形,且,平面,,為中點(diǎn).(1)求證平面;(2)若平面平面,求到平面的距離.【答案】(1)見(jiàn)解析;(2)試題解析(2)由(1)得平面,所以到平面的距離等于到平面的距離.取的中點(diǎn),連接,因?yàn)樗倪呅螢榱庑危?,,所以,,因?yàn)槠矫嫫矫?,平面平面,所以平面,,因?yàn)?,所以,學(xué)
【摘要】立體幾何大題20道1、(17年浙江)如圖,已知四棱錐P-ABCD,△PAD是以AD為斜邊的等腰直角三角形,BC∥AD,CD⊥AD,PC=AD=2DC=2CB,E為PD的中點(diǎn).(I)證明:CE∥平面PAB;(II)求直線CE與平面PBC所成角的正弦值2、(17新課標(biāo)3)如圖,四面體ABCD中,△ABC是正三角形,AD=CD.(1)證明:AC⊥BD;(2)已知△ACD是直
【摘要】立體幾何河北高碑店一中王金民立體幾何高考命題呈如下幾個(gè)主要特點(diǎn):?(1)題型、題量和難度相對(duì)穩(wěn)定,題型一般為“二選一填一解答”或“一選一填一解答”,題量的分值基本控制在總分值的14﹪至8﹪之間,題目難度多見(jiàn)基本題和中檔題,難度系數(shù)一般分布在,略低于全套試題的總計(jì)難度。?(2)高考試題的命制都以柱體、錐體為載體,題
2024-11-11 05:49
【摘要】文科立體幾何證明線面、面面平行,四棱錐P-ABCD中,PA⊥底面ABCD,AD∥BC,AB=AD=AC=3,PA=BC=4,M為線段AD上一點(diǎn),AM=2MD,N為PC的中點(diǎn).①證明MN∥平面PAB;②求四面體N-BCM的體積.2.如圖,四棱錐P-ABCD中,AD∥BC,AB=BC=AD,E,F(xiàn),H分別為線段AD,PC
2025-03-25 03:14
【摘要】第一篇:立體幾何規(guī)范性證明 立體幾何證明規(guī)范性訓(xùn)練(1) 1、如圖,M,N,K分別是正方體ABCD-A1B1C1D1的棱AB,CD,C1D1的中點(diǎn).(1)求證:AN//平面A1MK;(2)求證:M...
2024-10-14 09:02
【摘要】第一篇:立體幾何證明大題答案 立體幾何證明大題答案 1.(本題滿分9分) 證明: ü(1)AE=EDüyTEF//DC?AF=FCt??EF?平面BCDyTEF//平面BCD DCì平面BC...
2024-11-12 12:47
【摘要】第一篇:立體幾何復(fù)習(xí)課教學(xué)設(shè)計(jì) 立體幾何復(fù)習(xí)課 一、教學(xué)背景 幾何學(xué)是研究現(xiàn)實(shí)世界中物體的形狀、大小與位置關(guān)系的數(shù)學(xué)學(xué)科。三維空間是人類(lèi)生存的現(xiàn)實(shí)空間,認(rèn)識(shí)空間圖形,培養(yǎng)和發(fā)展學(xué)生的空間想象能力...
2024-11-09 22:37
【摘要】第一篇:立體幾何的證明方法1] 立體幾何的證明方法總結(jié) 文字語(yǔ)言表述部分: 一、線線平行的證明方法 1、利用平行四邊形; 2、利用三角形或梯形的中位線; 3、如果一條直線和一個(gè)平面平行,經(jīng)...
2024-11-15 05:28
【摘要】第一篇:高中立體幾何證明方法 高中立體幾何 一、平行與垂直關(guān)系的論證 由判定定理和性質(zhì)定理構(gòu)成一套完整的定理體系,在應(yīng)用中:低一級(jí)位置關(guān)系判定高一級(jí)位置關(guān)系;高一級(jí)位置關(guān)系推出低一級(jí)位置關(guān)系,前...
2024-10-28 20:01
【摘要】立體幾何(幾何法)—等體積轉(zhuǎn)化例1(2013年高考上海卷(理))如圖,在長(zhǎng)方體ABCD-A1B1C1D1中,AB=2,AD=1,A1A=1,證明直線BC1平行于平面DA1C,并求直線BC1到平面D1AC的距離.【答案】因?yàn)锳BCD-A1B1C1D1為長(zhǎng)方體,故,故ABC1D1為平行四邊形,故,顯然B不在平面D1AC上,于是直線BC1平行于平面DA1C;直線BC1到平面D1
2025-06-24 19:01
【摘要】第一篇:立體幾何起始課教學(xué)設(shè)計(jì) 《立體幾何起始課》教學(xué)設(shè)計(jì)北京市三里屯一中劉長(zhǎng)海 【教材分析】 立體幾何是研究三維空間中物體的形狀、大小和位置關(guān)系的一門(mén)數(shù)學(xué)學(xué)科,,學(xué)習(xí)立體幾何對(duì)我們更好地認(rèn)識(shí)、...
2024-11-04 12:26
【摘要】第一篇:立體幾何解題技巧 立體幾何解題技巧 李明健發(fā)布時(shí)間:2010-8-416:07:19 立體幾何解答題的設(shè)計(jì),注意了求解方法既可用向量方法處理,又可以用傳統(tǒng)的幾何方法解決,并且一般來(lái)說(shuō),向...
2024-11-15 05:52
【摘要】立體幾何大題題型二:翻折問(wèn)題,,是的中點(diǎn),將△沿著翻折成△,使面面,分別為的中點(diǎn).(1)求三棱錐的體積;(2)證明:平面;(3)證明:平面平面.思路分析:對(duì)于翻折問(wèn)題要注意翻折后的圖形與翻折前的圖形中的變與不變量.(1)求棱錐的體積一般找棱錐高易求的進(jìn)行轉(zhuǎn)換.由題意知,且,∴四邊形為平行四邊形,∴,即為等邊三角形.由面面的性質(zhì)定理,連結(jié),則,可知平面.所以即可;(2)本題
2025-07-24 12:06