【摘要】全國自學(xué)考試:0020高數(shù)(一)串講講義試題特點:知識點覆蓋全面,大多數(shù)題目難度不大,個別題目有一定的難度,但都沒有超出大綱要求。復(fù)習(xí)要求:不報僥幸心理,復(fù)習(xí)要涉及每個知識點。每個知識點要做相應(yīng)的練習(xí)題。全書內(nèi)容可粗分為以下三大部分:第一部分函數(shù)極限與連續(xù)(包括級數(shù))第二部分導(dǎo)數(shù)及其應(yīng)用(包括多元函數(shù))第三部分積分計算及其應(yīng)用(包括二重積
2024-08-31 10:11
【摘要】第二章質(zhì)量管理的基本概念和方法§質(zhì)量和質(zhì)量管理的基本概念?關(guān)于質(zhì)量和質(zhì)量管理的基本術(shù)語一、質(zhì)量(quality)ISO8402對質(zhì)量的定義如下:質(zhì)量是反映實體滿足明確或隱含需要能力的特性的總和。對質(zhì)量定義的說明1.“實體”(entity)是指能夠單獨
2025-01-18 16:08
【摘要】練習(xí)6-2 練習(xí)6-2
2025-01-15 09:23
【摘要】(一)含有的積分()1.=2.=()3.=4.=5.=6.=7.=8.=9.=(二)含有的積分10.=11.=12.=13.=14.=15.=16.=17.=18.=(三)含有的積分19.=20.=21.=(四)含有的積分22.=23.=24.=25.=26.=27.=2
2024-09-01 22:01
【摘要】1§?一、多元函數(shù)的極值與最值?二、條件極值?三、最小二乘法*2二元函數(shù)極值的定義?設(shè)函數(shù)z=f(x,y)在點(x0,y0)的某鄰域內(nèi)有定義,對于該鄰域內(nèi)異于(x0,y0)的點(x,y):若滿足不等式f(x,y)f(x0,y0),則稱函數(shù)在(x0,y0)有極大值;若滿足不等式f(x,y)
2025-01-08 13:30
【摘要】作業(yè)習(xí)題求下列不定積分。1、;2、;3、;4、;5、;6、;7、;8、;9、;10、;11、;12、;13、;14、;15、;16、。作業(yè)習(xí)題參考答案:1、解:。2、解:。3、解:。4、解:。5、解:。6、解:。7、解:。8、解:。9、解:
2025-01-14 12:50
【摘要】12022年浙江省高等數(shù)學(xué)(微積分)競賽試題及解答一.計算題1.求??1lim2xxxex??????????.解法一令1tx?,原式011lim2ttett??????????????????0211limtttet
2025-01-08 21:44
【摘要】2022/2/131P166習(xí)題1(1)(5).2(2).3(1)(3).4(4)(5).5(1).復(fù)習(xí):P158—166作業(yè)預(yù)習(xí):P168—1742022/2/132第十六講定積分(一)二、定積分的概念三、可積性條件與可積類一、兩個典型例子四、定積分的基本
2025-01-16 06:25
【摘要】1-11.(1)[-3,3];(2)(-∞,0)∪(2,+∞);(3)(-2,1);(4)(-1.01,-1)∪(-1,0.99)2.(1)[-1,0)∪(0,1);(2)(1,2];(3)[-6,1).3.(1)(-∞,1)∪
2025-01-09 19:52
【摘要】一、問題的提出二、定積分的定義三、存在定理四、幾何意義五、小結(jié)思考題第一節(jié)定積分的概念abxyo??A曲邊梯形由連續(xù)曲線實例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.一、問題的提出)(xfy?ab
2024-08-30 12:42
【摘要】2022/2/131作業(yè)P176習(xí)題16.19.20.P182習(xí)題3(2)(6).5.7(3)(7).9.P186習(xí)題4.5.25.預(yù)習(xí):P198—2102022/2/132第十八講定積分(三)
2025-01-16 06:11
【摘要】2022/2/131作業(yè)6(3)(6)(9)(11)(14)(17).9(4)(8)(15)(21).10(8).11(2).12(2).P67習(xí)題2022/2/132二、高階導(dǎo)數(shù)第六講
2025-01-16 06:42
【摘要】2-2電路如圖2-35所示,已知VCC=12V,RC=2kW,晶體管的,UBE=V,ICEO=mA,要求:(1)mA,試計算RB應(yīng)取多大值?(2)如果欲將UCE調(diào)到3V,試問RB應(yīng)取多大值?圖2-35題2-2圖解:1)所以2),所以2-3電路圖2-36所示,已知晶體管的=60,,=V,試求:(1)靜態(tài)工作點IB,IC,UCE;(2)
2025-08-05 15:45
【摘要】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運動中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運動中路程為21()dTTvtt?設(shè)某物體作直線運動,已知速度)(tvv?是時間間隔],[21TT上t的一個連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【摘要】2022/2/131作業(yè)P201習(xí)題1(5)2.8(2).預(yù)習(xí):P211—218P210習(xí)題11(1).15(1)P218綜合題5.P113習(xí)題15(2).2022/2/132第十九講定積分的應(yīng)用(一)二、幾
2025-01-16 06:20