【摘要】題目(選修Ⅱ)第一章概率與統(tǒng)計數(shù)學(xué)歸納法高考要求1掌握數(shù)學(xué)歸納法的證明步驟,熟練表達數(shù)學(xué)歸納法證明過程2對數(shù)學(xué)歸納法的認(rèn)識不斷深化3掌握數(shù)學(xué)歸納法的應(yīng)用:①證恒等式;②整除性的證明;③探求平面幾何中的問題;④探求數(shù)列的通項;⑤不等式的證明知識點歸納1歸納法:由一些特殊事例推出一般結(jié)論的推理方法特點:特殊→一般2不完全歸納法:根據(jù)事物的部分(而不是全部)特
2025-06-07 22:55
【摘要】問題情境一4341112???4741222???5341332???6141442???7141552???的數(shù)都是質(zhì)數(shù)任何形如出猜想于是可以用歸納推理提都是質(zhì)數(shù),)(41*2Nnnn???結(jié)論是錯誤的。是一個合數(shù)時,因為4341414141414122????????nnn
2024-11-18 15:25
【摘要】§數(shù)學(xué)歸納法學(xué)習(xí)目標(biāo)思維脈絡(luò)1.能理解用數(shù)學(xué)歸納法證明問題的原理.2.會用數(shù)學(xué)歸納法證明與正整數(shù)有關(guān)的等式及數(shù)列問題.3.能用數(shù)學(xué)歸納法證明與n有關(guān)的不等式整除問題.4.注意總結(jié)用數(shù)學(xué)歸納法證明命題的步驟與技巧方法.121.數(shù)學(xué)歸納法數(shù)學(xué)歸納法是用來證
2024-11-18 00:49
【摘要】難點31數(shù)學(xué)歸納法解題,抽象與概括,從特殊到一般是應(yīng)用的一種主要思想方法.●難點磁場(★★★★)是否存在a、b、c使得等式1·22+2·32+…+n(n+1)2=(an2+bn+c).●案例探究[例1]試證明:不論正數(shù)a、b、c是等差數(shù)列還是等比數(shù)列,當(dāng)n>1,n∈N*且a、b、c互不相等時,均有:an+>2bn.命題意圖:本題主要考查數(shù)學(xué)歸納法證
2025-06-08 00:20
【摘要】2.3數(shù)學(xué)歸納法(2)證明某些與自然數(shù)有關(guān)的數(shù)學(xué)題,可用下列方法來證明它們的正確性:(1)驗證當(dāng)n取第一個值n0(例如n0=1)時命題成立,(2)假設(shè)當(dāng)n=k(k?N*,k?n0)時命題成立,證明當(dāng)n=k+1時命題也成立完成這兩步,就可以斷定這個命題對從n0開始的所有正整數(shù)n都成立。這種證明方法叫做數(shù)學(xué)歸納法。
【摘要】第一篇:歸納法證明不等式 歸納法證明不等式 由于lnx0則x 1設(shè)f(x)=x-lnxf'(x)=1-1/x0 則f(x)為增函數(shù)f(x)f(1)=1 則xlnx 則可知道等式成...
2024-10-28 02:13
【摘要】第三節(jié)基本不等式及其應(yīng)用基礎(chǔ)梳理1.基本不等式.2abab?(1)基本不等式成立的條件:________.(2)等號成立的條件:當(dāng)且僅當(dāng)________時取等號.a(chǎn)≥0,b≥0a=b2.幾個重要的不等式(1)a2+b2≥________(a,b∈R).(2)baab??___
2024-11-12 16:44
【摘要】第一課時不等式性質(zhì)及其應(yīng)用必修5第三章高中數(shù)學(xué)學(xué)業(yè)水平考試總復(fù)習(xí)不等式學(xué)習(xí)目標(biāo),理解兩個正數(shù)的基本不等式及其簡單應(yīng)用,關(guān)注學(xué)科內(nèi)綜合.,理解一元二次不等式的解法;知道二元一次不等式的幾何意義,理解用平面區(qū)域表示二元一次不等式組,關(guān)注實踐應(yīng)用.
2024-11-09 23:32
【摘要】數(shù)學(xué)歸納法證明不等式第四講????????????.,,,,|sin||sin|:,,.,,,,???????????????????NnxnxxnNnnNnnnnnNnnnNnnnn11152200???例如等式數(shù)多個正整數(shù)相關(guān)
2024-11-17 15:12
【摘要】高考數(shù)學(xué)難點突破訓(xùn)練——數(shù)列與數(shù)學(xué)歸納法,曲線2(0)yxy??上的點iP與x軸的正半軸上的點iQ及原點O構(gòu)成一系列正三角形△OP1Q1,△Q1P2Q2,?△Qn-1PnQn?設(shè)正三角形1nnnQPQ?的邊長為na,n∈N﹡(記0Q為O),??,0nnQS.(1)求1a的值;(2)求
2024-08-29 20:23
【摘要】北師大版解斜三角形復(fù)習(xí)、請回答下列問題(1)解斜三角形的主要理論依據(jù)是什么?正弦定理RCcBbAa2sinsinsin???余弦定理Abccbacos2222???Baccabcos2222???Cabbaccos2222???解斜三角形復(fù)習(xí)、請回答
2024-11-12 17:10
【摘要】2.3.2數(shù)學(xué)歸納法應(yīng)用舉例【學(xué)習(xí)要求】1.進一步掌握數(shù)學(xué)歸納法的實質(zhì)與步驟,掌握用數(shù)學(xué)歸納法證明等式、不等式、整除問題、幾何問題等數(shù)學(xué)命題.2.掌握證明n=k+1成立的常見變形技巧:提公因式、添項、拆項、合并項、配方等.【學(xué)法指導(dǎo)】通過對數(shù)學(xué)歸納法的學(xué)習(xí),培養(yǎng)勇于探索、創(chuàng)新的個性品質(zhì),培養(yǎng)大膽猜想,小心求
2024-08-02 17:44
【摘要】新課標(biāo)人教版課件系列《高中數(shù)學(xué)》選修2-2《數(shù)學(xué)歸納法》教學(xué)目標(biāo)?了解數(shù)學(xué)歸納法的原理,能用數(shù)學(xué)歸納法證明一些簡單的數(shù)學(xué)命題。?教學(xué)重點:?了解數(shù)學(xué)歸納法的原理第一課時一、歸納法對于某類事物,由它的一些特殊事例或其全部可能情況,歸納出一般結(jié)論的推理方法,叫歸納法。歸納法{
2024-11-17 17:34
【摘要】高考數(shù)學(xué)總復(fù)習(xí)課堂作業(yè)教案課后拓展學(xué)案課時練習(xí)與詳解免費下載數(shù)學(xué)歸納法基礎(chǔ)自測:“1+a+a2+…+an+1=(a≠1)”在驗證n=1時,左端計算所得的項為.答案1+a+a2(n)對n=k成立,則它對n=k+1也成立,現(xiàn)已知P(n)對n=4不成立,則下列結(jié)論正確的是(填序號).①P(n)對n∈N*成立②P(n)對n>4且n
2025-06-07 19:24
【摘要】數(shù)學(xué)歸納法典型例題?一.教學(xué)內(nèi)容:高三復(fù)習(xí)專題:數(shù)學(xué)歸納法?二.教學(xué)目的掌握數(shù)學(xué)歸納法的原理及應(yīng)用?三.教學(xué)重點、難點數(shù)學(xué)歸納法的原理及應(yīng)用?四.知識分析【知識梳理】數(shù)學(xué)歸納法是證明關(guān)于正整數(shù)n的命題的一種方法,在高等數(shù)學(xué)中有著重要的用途,因而成為高考的熱點之一。近幾年的高考試題,不但要求能用數(shù)學(xué)
2025-04-04 04:28