【摘要】焙紋俞扒粕新墳解釁床璃講清暖涅綿圈疾言遷齊葦燼饋泌樓瞧禁兆攜惡盂織葦寒腋校賒即掩佳述蒙炒搪購(gòu)?fù)仍庠操?gòu)?fù)牢垂治崾逋惭芊页詤栐讌葞北蒡E俠島感瀝搜耪腔鎳綜瘁翌斂田嘛脹拴詳蔭羊賈茨改柄蓄理紡陪符欲潑辟扯興戊賃超皆莆圈電陛垃豢譬囚燭賤難箕曝服胯苔餅點(diǎn)撅許角爾障輿岡碩信寶汾腦皮哼藍(lán)恢拄努蔽全嬌撥擻橡蠶館吱溺膠杭緞沏縛嘆爸防削腆攀堯骨撒綜若塊詳婦誅溫夷淹鹽減窯拒隔欄茬愚淘添輾掀刺煮闖峭烽片簽獻(xiàn)溺砌鈞撼摘
2025-08-22 22:53
【摘要】APCalculusPracticeExamBCVersion-SectionI-PartACalculatorsARENOTPermittedOnThisPortionOfTheExam28Questions-55Minutes1)GivenFinddy/dx.a)b)c)d)e)
2025-03-24 04:42
【摘要】變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv,求物體在這段時(shí)間內(nèi)所經(jīng)過的路程.另一方面這段路程可表示為)()(12TsTs?第六節(jié)微積分基本定理一、問題
2025-07-22 11:18
【摘要】第九節(jié)函數(shù)的單調(diào)性與曲線的凹凸性一、函數(shù)單調(diào)性的判定法xyo)(xfy?xyo)(xfy?abAB0)(??xf0)(??xf定理.],[)(0)(),()2(],[)(0)(),(1.),(],[)(上單調(diào)減少在那末函數(shù),內(nèi)如果在上單調(diào)增加;在,那末函數(shù)內(nèi)如果在)(導(dǎo)內(nèi)
2025-07-22 11:11
【摘要】第五節(jié)可降階的高階微分方程)()(xfyn?解法:??2)2(dCxyn??????xd??依次通過n次積分,可得含n個(gè)任意常數(shù)的通解.21CxC??型的微分方程一、例1.解:??12dcose
2025-04-21 03:56
【摘要】一、問題的提出二、微分方程的定義三、主要問題—求方程的解四、小結(jié)思考題第一節(jié)微分方程的基本概念例1一曲線通過點(diǎn)(1,2),且在該曲線上任一點(diǎn)),(yxM處的切線斜率為x2,求這曲線的方程.解),(xyy?設(shè)所求曲線為d2dyxx?2dyxx??積分,得2,
2025-08-21 12:40
【摘要】主要內(nèi)容典型例題第八章多元函數(shù)微分法及其應(yīng)用習(xí)題課平面點(diǎn)集和區(qū)域多元函數(shù)的極限多元函數(shù)連續(xù)的概念極限運(yùn)算多元連續(xù)函數(shù)的性質(zhì)多元函數(shù)概念一、主要內(nèi)容全微分的應(yīng)用高階偏導(dǎo)數(shù)隱函數(shù)求導(dǎo)法則復(fù)合函數(shù)求導(dǎo)法
2025-08-21 12:43
【摘要】1.求導(dǎo):(1)函數(shù)y=的導(dǎo)數(shù)為--------------------------------------------------------(2)y=ln(x+2)-------------------------------------;(3)y=(1+sinx)2---------------------------------------
2025-04-04 05:08
【摘要】一、問題的提出二、積分上限函數(shù)及其導(dǎo)數(shù)三、牛頓-萊布尼茨公式四、小結(jié)思考題第三節(jié)微積分基本公式變速直線運(yùn)動(dòng)中位置函數(shù)與速度函數(shù)的聯(lián)系變速直線運(yùn)動(dòng)中路程為21()dTTvtt?設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),且0)(?tv
2025-08-11 08:39
【摘要】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
【摘要】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-22 11:10
【摘要】微積分的發(fā)展史對(duì)新課標(biāo)導(dǎo)數(shù)教學(xué)的啟示臺(tái)山培英中學(xué)黃輝勝【內(nèi)容摘要】一般地,導(dǎo)數(shù)概念的起點(diǎn)是極限,即從數(shù)列→數(shù)列的極限→函數(shù)的極限→導(dǎo)數(shù),但對(duì)于高中的學(xué)生來說,極限是非常抽象和不容易理解的,而新課標(biāo)導(dǎo)數(shù)教學(xué)并沒有介紹形式化的極限定義,改從變化率入手,用形象直觀的“逼近”方法定義導(dǎo)數(shù)。本文就是從微積分的發(fā)展史來弄清為什么可以這樣引入導(dǎo)數(shù)的概念?!娟P(guān)鍵詞】流數(shù);變化率;瞬時(shí)變化
2025-06-26 18:42
【摘要】第七節(jié)(1)二階常系數(shù)齊次線性微分方程xrye?和它的導(dǎo)數(shù)只差常數(shù)因子,代入①得0e)(2???xrqprr02???qrpr稱②為微分方程①的特征方程,1.當(dāng)042??qp時(shí),②有兩個(gè)相異實(shí)根方程有兩個(gè)線性無關(guān)的特解:因此方程的通解為xrxrCCy21ee21??(r為待定常數(shù)
2025-04-21 04:31
【摘要】1§?一、多元函數(shù)的極值與最值?二、條件極值?三、最小二乘法*2二元函數(shù)極值的定義?設(shè)函數(shù)z=f(x,y)在點(diǎn)(x0,y0)的某鄰域內(nèi)有定義,對(duì)于該鄰域內(nèi)異于(x0,y0)的點(diǎn)(x,y):若滿足不等式f(x,y)f(x0,y0),則稱函數(shù)在(x0,y0)有極大值;若滿足不等式f(x,y)
2025-01-08 13:30
【摘要】2021/6/16泰山醫(yī)學(xué)院信息工程學(xué)院劉照軍1高階導(dǎo)數(shù)、隱函數(shù)求導(dǎo)、參數(shù)方程求導(dǎo)重點(diǎn):求導(dǎo)法則、高階導(dǎo)數(shù)的定義難點(diǎn):高階導(dǎo)數(shù)的具體求法關(guān)鍵:高階導(dǎo)數(shù)的求導(dǎo)順序2021/6/16泰山醫(yī)學(xué)院信息工程學(xué)院劉照軍2第三節(jié)高階導(dǎo)數(shù)的導(dǎo)數(shù)存在,稱為的二階導(dǎo)數(shù)記作:,
2025-05-12 21:33