【摘要】§內(nèi)容回顧()dbafxx??定積分定義定積分的幾何意義:01lim()niiifx??????各部分面積的代數(shù)和可積的充分條件:1.2.且只有有限個(gè)間斷點(diǎn)定積分的性質(zhì)(設(shè)所列定積分都存在)0d)(??aaxxf1.dbax?(
2024-11-03 21:17
【摘要】1數(shù)值計(jì)算方法2?先修課程高等代數(shù)、線性代數(shù)、一門編程語(yǔ)言?開課情況48學(xué)時(shí),3學(xué)分。3教學(xué)安排?1.緒論?2.非線性方程的數(shù)值解法?3.線性方程組的數(shù)值解法?4.函數(shù)逼近的插值法與曲線擬合法?5.數(shù)值積分?6.常微分方程數(shù)值解法
2025-05-14 02:18
【摘要】NumericalAnalysisJ.G.LiuSchoolofMath.&Phys.NorthChinaEle
2025-05-14 00:21
【摘要】第6章常微分方程的數(shù)值解法???????0')(),,(uaubtautfu0()(,())dtautufu??????uuLutfut
2025-05-02 05:32
【摘要】由親乃滴先輩們整理?! ≈?jǐn)以此文獻(xiàn)給所有堅(jiān)持考前突擊的朋友們!??
2025-08-21 21:58
【摘要】72習(xí)題一1.設(shè)0相對(duì)誤差為2%,求,的相對(duì)誤差。解:由自變量的誤差對(duì)函數(shù)值引起誤差的公式:得(1)時(shí);(2)時(shí)2.設(shè)下面各數(shù)都是經(jīng)過(guò)四舍五入得到的近似數(shù),即誤差不超過(guò)最后一位的半個(gè)單位,試指出他們各有幾位有效數(shù)字。(1);(2);(3)。解:由教材關(guān)于型數(shù)的有效數(shù)字的結(jié)論,易得上面三個(gè)數(shù)的有效數(shù)字位數(shù)分別為:3,4,53.用十
2025-06-25 01:55
【摘要】第一講?函數(shù)、連續(xù)與極限一、理論要求函數(shù)的基本性質(zhì)(單調(diào)、有界、奇偶、周期)幾類常見函數(shù)(復(fù)合、分段、反、隱、初等函數(shù))極限存在性與左右極限之間的關(guān)系夾逼定理和單調(diào)有界定理會(huì)用等價(jià)無(wú)窮小和羅必達(dá)法則求極限函數(shù)連續(xù)(左、右連續(xù))與間斷理解并會(huì)應(yīng)用閉區(qū)間上連續(xù)函數(shù)的性質(zhì)(最值、有界、介值)二、題型與解法(1
2025-07-21 10:42
【摘要】第四章數(shù)值微積分?Newton-Cotes型求積公式?復(fù)化求積公式?Gauss型求積公式?數(shù)值微分§1.引言求函數(shù)在給定區(qū)間上的定積分,在高等數(shù)學(xué)教程中已給出了許多有效的方法。但在實(shí)際問(wèn)題中,往往僅給出函數(shù)在一些離散點(diǎn)的值,它的解析表達(dá)式?jīng)]有明顯的給出;或者,雖然給出解析
2024-10-17 11:50
【摘要】三次樣條插值?前面我們根據(jù)區(qū)間[a,b]上給出的節(jié)點(diǎn)做插值多項(xiàng)式Ln(x)近似表示f(x)。一般總以為L(zhǎng)n(x)的次數(shù)越高,逼近f(x)的精度越好,但實(shí)際并非如此,次數(shù)越高,計(jì)算量越大,也不一定收斂。因此高次插值一般要慎用,實(shí)際上較多采用分段低次插值。分段插值2,)1,(],[,1],[)(],[,,...
2025-05-14 07:52
【摘要】第二節(jié)二重積分的計(jì)算法教學(xué)目的:熟練掌握二重積分的計(jì)算方法教學(xué)重點(diǎn):利用直角坐標(biāo)和極坐標(biāo)計(jì)算二重積分教學(xué)難點(diǎn):化二重積分為二次積分的定限問(wèn)題教學(xué)內(nèi)容:利用二重積分的定義來(lái)計(jì)算二重積分顯然是不實(shí)際的,二重積分的計(jì)算是通過(guò)兩個(gè)定積分的計(jì)算(即二次積分)來(lái)實(shí)現(xiàn)的.一、利用直角坐標(biāo)計(jì)算二重積分我們用幾何觀點(diǎn)來(lái)討論二重積分的計(jì)算問(wèn)題.討論中,我們假定;假定積分區(qū)域
2025-04-07 07:56
【摘要】(一)含有的積分()1.=2.=()3.=4.=5.=6.=7.=8.=9.=(二)含有的積分10.=11.=12.=13.=14.=15.=16.=17.=18.=(三)含有的積分19.=20.=21.=(四)含有的積分22.=23.=24.=25.=26.=27.=2
2025-08-23 22:01
【摘要】一、問(wèn)題的提出二、Pn和Rn的確定四、簡(jiǎn)單應(yīng)用五、小結(jié)思考題三、泰勒中值定理第五節(jié)泰勒(Taylor)公式一、問(wèn)題的提出1.設(shè))(xf在0x處連續(xù),則有2.設(shè))(xf在0x處可導(dǎo),則有例如,當(dāng)x很小時(shí),xex??1,xx??)1ln([???)
2025-08-21 12:38
【摘要】2021/6/151LED的熱量管理ThermalManagementConsiderationsforLEDs22021/6/15?一、熱對(duì)LED的影響(1)LED的發(fā)光原理是電子與空穴經(jīng)過(guò)復(fù)合直接發(fā)出光子,過(guò)程中不需要熱量。LED可以稱為冷光源。(2)LED的發(fā)光需要電流驅(qū)動(dòng)。輸入LED的電能中,只有
2025-05-10 18:23
【摘要】復(fù)利終值與現(xiàn)值由于利息的因素,貨幣是有時(shí)間價(jià)值的,從經(jīng)濟(jì)學(xué)的觀點(diǎn)來(lái)看,即使不考慮通脹的因素,貨幣在不同時(shí)間的價(jià)值也是不一樣的;今天的1萬(wàn)元,與一年后的1萬(wàn)元,其價(jià)值是不相等的。例如,今天的1萬(wàn)元存入銀行,定期一年,年利10%,,,它就是貨幣的時(shí)間價(jià)值。貨幣的時(shí)間價(jià)值有兩種表現(xiàn)形式。一是絕對(duì)數(shù),即利息;一是相對(duì)數(shù),即利率。存放款開始的本金,又叫“現(xiàn)值”,如上例中的1萬(wàn)元就是
2025-08-22 17:03
【摘要】常用微積分公式???????基本積分公式均直接由基本導(dǎo)數(shù)公式表得到,因此,導(dǎo)數(shù)運(yùn)算的基礎(chǔ)好壞直接影響積分的能力,應(yīng)熟記一些常用的積分公式. 因?yàn)榍蟛欢ǚe分是求導(dǎo)數(shù)的逆運(yùn)算,所以由基本導(dǎo)數(shù)公式對(duì)應(yīng)可以得到基本積分公式.。(1)?????
2025-07-22 12:20