【摘要】課程設計說明書課程名稱:數(shù)值計算與算法設計課程設計題目:導彈追蹤微分方程模型的數(shù)值解法院系:理學院_專業(yè)班級:_應用數(shù)學2005-2學號:_200513794_學生姓名:__儲素霞__指導教師:__許峰___2008年7月11日安徽理工大學課程
2025-01-16 14:12
【摘要】常微分方程的高精度求解方法安徽大學江淮學院07計算機(1)班安徽大學江淮學院本科畢業(yè)論文(設計)題目:常微分方程求解的高階方法學生姓名:圣近學號:JB074219院(系):計算機科學與技術專業(yè):計算
2025-06-03 12:01
【摘要】課程設計說明書課程名稱:數(shù)值計算與算法設計課程設計題目:導彈追蹤微分方程模型的數(shù)值解法院系:理學院_專業(yè)班級:_應用數(shù)學2021-2學號:_202113794_學生姓名:__儲素霞__指導教師:__許
2025-06-07 13:47
【摘要】常微分方程習題集華東師范大學數(shù)學系
2025-06-24 15:07
【摘要】常微分方程學習輔導(一)初等積分法微分方程的古典內(nèi)容主要是求方程的解,用積分的方法求常微分方程的解,叫做初等積分法,而可用積分法求解的方程叫做可積類型。初等積分法一直被認為是常微分方程中非常有用的基本解題方法之一,也是初學者必須接受的最基本訓練之一。在本章學習過程中,讀者首先要學會準確判斷方程的可積類型,然后要熟練掌握針對不同可積類型的5種解法,最后在學習
【摘要】常微分方程考試大綱教材:《常微分方程》,王高雄等編,高等教育出版社,1983年9月第2版總要求考生應理解《常微分方程》中線性與非線性方程,通解、特解與奇解、基本解組與基解矩陣、奇點與零解的穩(wěn)定性等基本概念。掌握一階微分方程的解的存在、唯一性定理及方程(組)的一般理論。掌握微分方程(組)的解法。應注意各部分知識結(jié)構(gòu)及知識間的內(nèi)在聯(lián)系,應有抽象思維、邏輯推理、準確運算
2025-09-25 15:27
【摘要】 常微分方程求解的高階方法畢業(yè)論文目錄第一章前言 1 1 1 1、通解與特解 1 2. 2 3 4第二章數(shù)值解法公共程序模塊分析 5第三章歐拉(Euler)方法 7Euler方法思想 7Euler方法的誤差估計 8 8 8 9第四章休恩方法 10休恩方法思想 10 10第五章泰勒
2025-06-25 13:51
【摘要】目錄摘要...............................................................I關鍵詞..............................................................IAbstract.............................................
2025-06-27 14:53
【摘要】1第3章解線性方程組的數(shù)值解法2引言在自然科學和工程技術中很多問題的解決常常歸結(jié)為解線性代數(shù)方程組。例如電學中的網(wǎng)絡問題,船體數(shù)學放樣中建立三次樣條函數(shù)問題,用最小二乘法求實驗數(shù)據(jù)的曲線擬合問題,解非線性方程組問題,用差分法或者有限元法解常微分方程,偏微分方程邊值問題等都導致求解
2025-05-09 02:07
【摘要】第一節(jié)微分方程的概念第二節(jié)常見的一階微分方程第三節(jié)高階微分方程第四節(jié)歐拉方程第五節(jié)微分方程的應用第六節(jié)差分方程簡介微分方程簡介?方程:線性方程、二次方程、高次方程、指數(shù)方程、對數(shù)方程、三角方程和方程組等。?用微積分描述運動,便得到微分方程。例如描述物質(zhì)在一定條件下的運動變化規(guī)律;
2025-01-19 12:01
【摘要】本科生實驗報告實驗課程微分方程數(shù)值解學院名稱管理科學學院專業(yè)名稱信息與計算科學學生姓名學生學號指導教師林紅霞實驗地點6C402實驗成績二〇一五年十月二〇一五年十一月填寫說明1、適用于本科生所有的實驗報告(印制實驗報告冊除外);2、專業(yè)填寫為專業(yè)全
2025-06-23 00:43
【摘要】第八章微分方程與差分方程簡介微分方程的基本概念可分離變量的一階微分方程一階線性微分方程可降階的高階微分方程二階常系數(shù)線性微分方程微分方程應用實例退出第八章微分方程與差分方程簡介我們知道,函數(shù)是研究客觀事物運動規(guī)律的重要工具,找出函數(shù)關
2024-11-03 21:15
【摘要】常微分方程試題庫(一)、填空題(每空3分)1、當_______________時,方程0),(),(??dyyxNdxyxM稱為恰當方程,或稱全微分方程,其原函數(shù)為:。2、形如________________的方程,稱為齊次方程。3、求),(yxfdxdy?滿足00)(
2025-01-10 04:05
【摘要】4.給定一階微分方程,(1).求出它的通解;(2).求通過點的特解;(3).求出與直線相切的解;(4).求出滿足條件的解;(5).繪出(2),(3),(4)中的解得圖形。解:(1).通解顯然為;(2).把代入得,故通過點的特解為;(3).因為所求直線與直線相切,所以只有唯一解,即只有唯一實根,從而,故與直線相切的解是;(4).把代入即得
2025-06-24 15:00
【摘要】第十二章常微分方程(A)一、是非題1.任意微分方程都有通解。(X)2.微分方程的通解中包含了它所有的解。(X)3.函數(shù)是微分方程的解。(O)4.函數(shù)是微分方程的解。(X)5.微分方程的通解是(為任意常數(shù))。(O)6.是一階線性微分方程。(X)7.不是一階線性微分方程。(O)8.的特征方程為