【摘要】向量的線性運算向量的加法一、填空題1.已知向量a表示“向東航行1km”,向量b表示“向南航行1km”,則a+b表示_______.①向東南航行2km②向東南航行2km③向東北航行2km④向東北航行2km2.在平行四邊形ABCD中,BC→+DC→+BA→+DA→
2025-11-26 03:24
【摘要】向量的減法一、填空題1.化簡OP→-QP→+PS→+SP→的結(jié)果等于________.2.如圖所示,在梯形ABCD中,AD∥BC,AC與BD交于O點,則BA→-BC→-OA→+OD→+DA→=________.3.化簡(AB→-CD→)-(AC→-BD→)的結(jié)果是____
2025-11-26 10:16
【摘要】【課堂新坐標】(教師用書)2021-2021學(xué)年高中數(shù)學(xué)空間向量的數(shù)量積課后知能檢測蘇教版選修2-1一、填空題1.下列結(jié)論中正確的序號是________.①a·b=a·c(a≠0)?b=c;②a·b=0?a=0或b=0;③(a·b)·c=a
2025-11-25 20:01
【摘要】第1章三角函數(shù)1.1任意角、弧度1.任意角你的手表慢了5分鐘,你是怎樣將它校準的?假如你的手表快了小時,你應(yīng)當(dāng)如何將它校準?當(dāng)時間校準后,分針旋轉(zhuǎn)了多少度?從該問題中可以看出,要正確地表達“校準”手表的過程,需要同時說明分針的旋轉(zhuǎn)量和旋轉(zhuǎn)方向.當(dāng)分針旋轉(zhuǎn)超過一周后,如何表述這
2025-11-30 03:49
【摘要】計算下列各式a?4)3)(1(??ababa?????????)(2)(3)2(a?12??b?5?)23()32)(3(cbacba???????????cba???25????課前小測))(())()(4(2121bcttbctt?????ctbt2122??復(fù)習(xí)思考:向量的加法
2025-11-09 12:10
【摘要】平面向量數(shù)量積的坐標表示教學(xué)目標1.正確理解掌握兩個向量數(shù)量積的坐標表示方法,能通過兩個向量的坐標求出這兩個向量的數(shù)量積.2.掌握兩個向量垂直的坐標條件,能運用這一條件去判斷兩個向量垂直.3.能運用兩個向量的數(shù)量積的坐標表示去解決處理有關(guān)長度、角度、垂直等問題.重點:兩個向量數(shù)量積的坐標表示,向量的長度公式,兩個向量垂直的充要條件.難點
2025-11-10 20:36
【摘要】平面向量數(shù)量積四大考點解析考點一.考查概念型問題例a、b、c是三個非零向量,則下列命題中真命題的個數(shù)()⑴??baab?ba//?;⑵ba,反向????baab?⑶??bababa???;⑷a=b???bacb?分析
2025-11-10 23:18
【摘要】已知兩個非零向量a和b,作OA=a,OB=b,則∠AOB=θ(0°≤θ≤180°)叫做向量a與b的夾角。OBAθ問題1:回憶一下物理中“功”的計算,功的大小與哪些量有關(guān)?結(jié)合向量的學(xué)習(xí)你有什么想法?θ|b|cosθabB1
2025-08-01 17:32
【摘要】abcosab???0?知識回顧1.定義:平面內(nèi)兩個非零向量的數(shù)量積(內(nèi)積)的定義=向量夾角的概念:平移兩個非零向量使它們起點重合,所成圖形中0?≤?≤180?的角稱為兩個向量的夾角
2025-11-09 08:49
【摘要】【金榜教程】2021年高中數(shù)學(xué)平面向量的坐標檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)a=(2,4),b=(x,1),當(dāng)a+b與a-b共線時,x值為()(A)13(B)1(C)12(D)14ABCD中,
2025-11-21 23:42
【摘要】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)向量的數(shù)量積課后訓(xùn)練北師大版必修4"1.已知a,b,c是非零向量,下列說法正確的是().A.若|a·b|=|a||b|,則a∥bB.若a·c=b·c,則a=bC.若|a|=|b|,則|a·c|=|b&
2025-11-21 23:41
【摘要】1.三角函數(shù)的應(yīng)用情景:如圖,某大風(fēng)車的半徑為2m,每12s旋轉(zhuǎn)一周,它的最低點O離地面m,風(fēng)車圓周上一點A從最低點O開始,運動t(s)后與地面的距離為h(m).思考:你能求出函數(shù)h=f(t)的關(guān)系式嗎?你能畫出它的圖象嗎?1.已知函數(shù)類型求解析式的方法是________.答案:待
【摘要】課題:向量的減法班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標】1、理解向量減法的含義;2、能用三角形法則和平行四邊形法則求出兩向量的差;【課前預(yù)習(xí)】1、如何用向量加法的三角形法則和平行四邊形法則作兩向量的和?2、??ABOA;???CA
2025-11-11 01:05
【摘要】向量的加法【學(xué)習(xí)目標】;;,并會用它們進行向量計算【學(xué)習(xí)重難點】重點:向量加法的三角法則、平行四邊形則和加法運算律難點:向量加法的三角法則、平行四邊形則和加法運算律;【自主學(xué)習(xí)】、向量的加法:已知向量a和b,_____________________________________