【摘要】abcosab???0?知識回顧1.定義:平面內(nèi)兩個非零向量的數(shù)量積(內(nèi)積)的定義=向量夾角的概念:平移兩個非零向量使它們起點重合,所成圖形中0?≤?≤180?的角稱為兩個向量的夾角
2025-11-09 08:49
【摘要】【金榜教程】2021年高中數(shù)學(xué)平面向量的坐標(biāo)檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)a=(2,4),b=(x,1),當(dāng)a+b與a-b共線時,x值為()(A)13(B)1(C)12(D)14ABCD中,
2025-11-21 23:42
【摘要】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)向量的數(shù)量積課后訓(xùn)練北師大版必修4"1.已知a,b,c是非零向量,下列說法正確的是().A.若|a·b|=|a||b|,則a∥bB.若a·c=b·c,則a=bC.若|a|=|b|,則|a·c|=|b&
2025-11-21 23:41
【摘要】1.三角函數(shù)的應(yīng)用情景:如圖,某大風(fēng)車的半徑為2m,每12s旋轉(zhuǎn)一周,它的最低點O離地面m,風(fēng)車圓周上一點A從最低點O開始,運動t(s)后與地面的距離為h(m).思考:你能求出函數(shù)h=f(t)的關(guān)系式嗎?你能畫出它的圖象嗎?1.已知函數(shù)類型求解析式的方法是________.答案:待
2025-11-26 10:16
【摘要】課題:向量的減法班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、理解向量減法的含義;2、能用三角形法則和平行四邊形法則求出兩向量的差;【課前預(yù)習(xí)】1、如何用向量加法的三角形法則和平行四邊形法則作兩向量的和?2、??ABOA;???CA
2025-11-11 01:05
【摘要】向量的加法【學(xué)習(xí)目標(biāo)】;;,并會用它們進行向量計算【學(xué)習(xí)重難點】重點:向量加法的三角法則、平行四邊形則和加法運算律難點:向量加法的三角法則、平行四邊形則和加法運算律;【自主學(xué)習(xí)】、向量的加法:已知向量a和b,_____________________________________
【摘要】高中數(shù)學(xué):《平面向量數(shù)量積的物理背景及其含義》課件(新人教A版必修4)平面向量的數(shù)量積的物理背景及其含義目標(biāo)導(dǎo)學(xué):1、能運用數(shù)量積表示兩個向量的夾角,計算向量的長度;2、會用數(shù)量積判斷兩個平面向量的垂直關(guān)系。向量的夾角:已知兩個非零向量和,作,
2025-07-20 04:53
【摘要】2020/12/25向量數(shù)量積的坐標(biāo)運算與度量公式2020/12/25向量數(shù)量積的坐標(biāo)運算及度量公式?掌握數(shù)量積的坐標(biāo)表達式,會進行平面數(shù)量積的坐標(biāo)運算?能運用數(shù)量積表示兩個向量的夾角,會用數(shù)量積的坐標(biāo)表達式判斷兩個平面向量的垂直關(guān)系2020/12/25一、復(fù)習(xí)練習(xí):)(則,夾角為與若。????
2025-11-09 12:10
【摘要】課題平面向量數(shù)量積的坐標(biāo)表示、模、夾角教學(xué)目標(biāo)知識與技能理解兩個向量數(shù)量積坐標(biāo)表示的推導(dǎo)過程,過程與方法能根據(jù)向量的坐標(biāo)計算向量的模,情感態(tài)度價值觀并推導(dǎo)平面內(nèi)兩點間的距離公式重點能根據(jù)向量的坐標(biāo)求向量的夾角及判定兩個向量垂直難點能運用數(shù)量積的坐標(biāo)表示進行向量數(shù)量積的運算.
2025-11-26 06:47
【摘要】平面向量數(shù)量積的物理背景及其含義一、向量的向量積在物理學(xué)中,由于討論像力矩以及物體繞軸旋轉(zhuǎn)時的角速度與線速度之間的關(guān)系等這類問題的需要,就必須引進兩向量乘法的另一運算——向量的向量積.定義如下:兩個向量a與b的向量積是一個新的向量c:(1)c的模等于以a及b兩個向量為邊所作成的平行四邊形的面積;(2)c垂直于
【摘要】Oxya引入:,點A可以用什么來表示??OxyA(a,b)aba:如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2.不共線的兩向量e1,e2叫做這一平面內(nèi)所
2025-11-08 15:05
【摘要】平面向量的數(shù)量積的物理背景及其含義命題方向1計算向量的數(shù)量積例1已知|a|=4,|b|=5,當(dāng)(1)a∥b;(2)a⊥b;(3)a與b的夾角為60°時,分別求a與b的數(shù)量積.[分析]a∥b時其夾角為0°或180°,a⊥b時其夾角為90°,將兩向量的模及夾角代入
【摘要】1.函數(shù)y=Asin(ωx+φ)的圖象情景:下表是某地1951—1981年月平均氣溫(華氏):月份123456平均氣溫月份789101112平均氣溫思考:(1)以月份為x軸,以平均氣溫為y軸,描出散點.(2)用正弦曲線去擬合這些數(shù)據(jù).(
【摘要】3.兩角和與差的正切你能根據(jù)正切函數(shù)與正弦、余弦函數(shù)的關(guān)系,從C(α±β)、S(α±β)出發(fā),推導(dǎo)出用任意角α,β的正切表示tan(α+β)、tan(α-β)的公式嗎?1.公式T(α-β)是_____________________________________
2025-11-26 10:15
2025-11-29 20:23