【摘要】§4平面向量的坐標(biāo)4.1平面向量的坐標(biāo)表示4.2平面向量線性運算的坐標(biāo)表示4.3向量平行的坐標(biāo)表示,)1.問題導(dǎo)航(1)相等向量的坐標(biāo)相同嗎?相等向量的起點、終點的坐標(biāo)一定相同嗎?(2)求向量AB→的坐標(biāo)需要知道哪些量?(3)兩個向量a=(x1,y
2024-11-28 00:13
【摘要】【金榜教程】2021年高中數(shù)學(xué)正切函數(shù)的誘導(dǎo)公式檢測試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)1.(20212石家莊高一檢測)tan300°的值為()(A)33(B)3?(C)3(D)33?tan126
2024-12-03 03:15
【摘要】雙基限時練(二十一)從力做的功到向量的數(shù)量積一、選擇題1.下列命題①a+(-a)=0;②(a+b)+c=a+(b+c);③(a2b)2c=a2(b2c);④(a+b)2c=a2c+b2()A.0個B.
2024-12-04 20:39
【摘要】平面向量共線的坐標(biāo)表示學(xué)習(xí)目標(biāo):1.理解用坐標(biāo)表示的平面向量共線的條件.2.能根據(jù)平面向量的坐標(biāo),判斷向量是否共線.3.掌握三點共線的判斷方法.【學(xué)法指導(dǎo)】1.應(yīng)用平面向量共線條件的坐標(biāo)表示來解決向量的共線問題優(yōu)點在于不需要引入?yún)?shù)“λ”,從而減少了未知數(shù)的個數(shù),而且使問題具有代數(shù)化的特點、程序
2024-11-19 20:38
【摘要】平面向量的坐標(biāo)運算學(xué)習(xí)目標(biāo):1.了解平面向量的正交分解,掌握向量的坐標(biāo)表示.2.掌握兩個向量和、差及數(shù)乘向量的坐標(biāo)運算法則.3.正確理解向量坐標(biāo)的概念,要把點的坐標(biāo)與向量的坐標(biāo)區(qū)分開來.【學(xué)法指導(dǎo)】1.向量的正交分解是把一個向量分解為兩個互相垂直的向量,是向量坐標(biāo)表示的理論依據(jù).向量的坐標(biāo)表示
2024-11-19 17:41
【摘要】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)向量的加法課后訓(xùn)練北師大版必修4"1.已知非零向量a,b,c,則向量(a+c)+b,b+(a+c),b+(c+a),c+(b+a),c+(a+b)中,與向量a+b+c相等的個數(shù)為().A.2B.3C.
2024-12-03 03:14
【摘要】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個不共線的向量,那么對于這一平面內(nèi)的任一向量a,有且只有一對實數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2024-11-17 17:33
【摘要】平面向量,設(shè)a=(x1,y1),b=(x2,y2),為實數(shù)。(1)向量式:a∥b(b≠0)a=b;(2)坐標(biāo)式:a∥b(b≠0)x1y2-x2y1=0;,設(shè)a=(x1,y1),b=(x2,y2),(1)向量式:a⊥b(b≠0)ab=0;(2)坐標(biāo)式:a⊥bx1x2+y1y2=0;=(x1,y1),b=(x2,y2),則ab==x1x2+y1y2;其幾何意義是ab等于a的長度與b
2025-04-04 05:05
【摘要】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)向量的減法課后訓(xùn)練北師大版必修4"1.AC可以寫成:①AOOC?;②AOOC?;③OAOC?;④OCOA?.其中正確的是().A.①②B.②③C.③④D.①④2.如圖,D,E,F(xiàn)分別是
【摘要】高中數(shù)學(xué)必修4知識點總結(jié)平面向量知識點歸納1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長度),記作||即向量的大小,記作||向量不能比較大小,但向量的??梢员容^大?。诹阆蛄浚洪L度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0
2025-04-04 05:10
【摘要】高中數(shù)學(xué)必修4平面向量知識點歸納1向量的概念:①向量:既有大小又有方向的量向量一般用……來表示,或用有向線段的起點與終點的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長度),記作||即向量的大小,記作||向量不能比較大小,但向量的模可以比較大?。诹阆蛄浚洪L度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0由于的
2025-08-11 09:32
【摘要】第二章平面向量平面向量的基本定理及坐標(biāo)表示平面向量共線的坐標(biāo)表示1.通過實例了解如何用坐標(biāo)表示兩個共線向量,以及兩直線平行與兩向量共線的判定.(易混點)2.理解用坐標(biāo)表示的平面向量共線的條件,并會應(yīng)用.(重點)3.會根據(jù)平面向量的坐標(biāo)判斷向量是否共線.(難點)1.平面向量共線的坐標(biāo)表示2
2024-11-19 19:09
【摘要】a?Ab?BCba???a?a?Ab?Bb?OCba???特點:首尾相接特點:共起點bBaABAab??:O特點:共起點:::向量與非零向量共線當(dāng)且僅當(dāng)有唯一一個實數(shù),使得ab
2024-11-17 19:47
【摘要】平面向量數(shù)量積的應(yīng)用平面向量的數(shù)量積及其性質(zhì)是平面向量的重點內(nèi)容,在平面向量中占重要的地位.利用平面向量的數(shù)量積及其性質(zhì)可以處理向量的許多問題.下面舉例歸納說明.一、求向量的長度(模)求向量的長度的依據(jù)是:①2aaa?·;②設(shè)?a(),xy,則a22??xy.例1已知5ab??,向量a與b的夾角為π3,
2024-12-05 06:36
【摘要】平面向量的運算與應(yīng)用平面向量是數(shù)學(xué)中重要的基本概念之一,向量知識是進(jìn)一步學(xué)習(xí)數(shù)學(xué)、物理及其它科學(xué)的有效工具,尤其是向量加減法,向量的倍積與數(shù)量積的運算律在運算中扮演著重要角色.一、向量的幾何運算向量運算有著豐富的幾何背景,三角形法則與平行四邊形法則是向量加減法運算的最基本而直觀的運算方法.例1已知點G是△ABC的重心,O為平面
2024-11-19 23:17