【摘要】等差數(shù)列第1課時(shí)等差數(shù)列1.理解等差數(shù)列的概念,明確“同一個(gè)常數(shù)”的含義.2.掌握等差數(shù)列的通項(xiàng)公式及其應(yīng)用.3.會判定或證明等差數(shù)列;了解等差數(shù)列與一次函數(shù)的關(guān)系.1231.等差數(shù)列文字語言一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)
2025-11-08 17:05
【摘要】等差數(shù)列的概念與通項(xiàng)公式A組基礎(chǔ)鞏固1.{an}為等差數(shù)列,且a7-2a4=-1,a3=0,則公差d等于()A.-2B.-12D.2解析:根據(jù)題意,得a7-2a4=a1+6d-2(a1+3d)=-1,∴a1=∵a3=a1+2d=0,∴d=-12.答案:B2.等
2025-11-29 20:23
【摘要】陜西省咸陽市涇陽縣云陽中學(xué)高中數(shù)學(xué)n項(xiàng)和導(dǎo)學(xué)案北師大版必修5【學(xué)習(xí)目標(biāo)】n項(xiàng)和公式n項(xiàng)和公式解決等差數(shù)列的問題【學(xué)習(xí)重點(diǎn)】在具體的問題情境中,如何靈活運(yùn)用等差數(shù)列的前n項(xiàng)和公式解決相應(yīng)的實(shí)際問題2.鞏固練習(xí)(1)設(shè)nS為等差數(shù)列{}na的前n項(xiàng)和,若33,S?624S
2025-11-10 07:34
【摘要】第一篇:高中數(shù)學(xué)《等差數(shù)列》教案新人教A數(shù)學(xué)必修5 差數(shù)列(1)教學(xué)目標(biāo)1.明確等差數(shù)列的定義. 2.掌握等差數(shù)列的通項(xiàng)公式,解決知道an,a1,d,n中的三個(gè),求另外一個(gè)的問題 3.培養(yǎng)學(xué)生觀...
2025-10-18 02:21
【摘要】課題:必修⑤三維目標(biāo):1、知識與技能(1)理解等差數(shù)列前項(xiàng)和的定義以及等差數(shù)列前項(xiàng)和公式推導(dǎo)的過程,并理解推導(dǎo)此公式的方法——倒序相加法,記憶公式的兩種形式;(2)用方程思想認(rèn)識等差數(shù)列前項(xiàng)和的公式,利用公式求;等差數(shù)列通項(xiàng)公式與前項(xiàng)和的公式兩套公式涉及五個(gè)字母,已知其中三個(gè)量求另兩個(gè)值;(3)會用等差數(shù)列的前項(xiàng)和公式解決一些簡單的與前項(xiàng)和有關(guān)的問題.
2025-06-07 23:27
【摘要】等比數(shù)列(一)課時(shí)目標(biāo),能夠利用定義判斷一個(gè)數(shù)列是否為等比數(shù)列.2.掌握等比數(shù)列的通項(xiàng)公式并能簡單應(yīng)用.,能夠應(yīng)用等比中項(xiàng)的定義解決有關(guān)問題.1.如果一個(gè)數(shù)列從第______項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的______都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的______,通常用字母____表示
2025-11-26 01:49
【摘要】等差數(shù)列第二課時(shí):an-an-1=d(n≥2)或an+1-an=d(n∈N*)2.通項(xiàng)公式:an=a1+(n-1)d一、復(fù)習(xí){an}為等差數(shù)列?3.等差數(shù)列的性質(zhì)an+1-an=dan+1=an+d?1212()nnnaaa?????例{an}的通項(xiàng)公
2025-11-08 17:35
【摘要】等差數(shù)列的概念及通項(xiàng)公式?學(xué)習(xí)目標(biāo):,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題..復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)
2025-11-08 17:33
【摘要】等差數(shù)列的前n項(xiàng)和·例題解析【例1】等差數(shù)列前10項(xiàng)的和為140,其中,項(xiàng)數(shù)為奇數(shù)的各項(xiàng)的和為125,求其第6項(xiàng).解依題意,得10ad=140aaaaa=5a20d=1251135791++++++101012()??????解
2025-11-11 03:12
【摘要】課題:等差數(shù)列的概念班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握等差數(shù)列的概念;2、能夠利用等差數(shù)列的定義判斷給定數(shù)列是否為等差數(shù)列【課前預(yù)習(xí)】1、上節(jié)課我們學(xué)習(xí)了數(shù)列的定義及通項(xiàng)公式,那么什么叫數(shù)列?什么叫??na的通項(xiàng)公式)?2、①德國數(shù)
2025-11-26 10:14
【摘要】第一頁,編輯于星期六:點(diǎn)三十四分。,2.2等差數(shù)列第二課時(shí)等差數(shù)列的性質(zhì),第二頁,編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點(diǎn)三十四分。,第四頁,編輯于星期六...
2025-10-13 18:52
【摘要】等差數(shù)列(第1課時(shí))學(xué)習(xí)目標(biāo)掌握等差數(shù)列的概念;理解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程;了解等差數(shù)列的函數(shù)特征;能用等差數(shù)列的通項(xiàng)公式解決相應(yīng)的一些問題.讓學(xué)生親身經(jīng)歷“從特殊入手,研究對象的性質(zhì),再逐步擴(kuò)大到一般”這一研究過程,培養(yǎng)他們觀察、分析、歸納、推理的能力.通過對等差數(shù)列的研究,培養(yǎng)學(xué)生主動(dòng)探索、勇于發(fā)現(xiàn)的求索精神;使學(xué)生
【摘要】第一篇:高中數(shù)學(xué)(二)新人教A版必修5 等差數(shù)列 (第一課時(shí))[講授新課]1.等差數(shù)列:一般地,如果一個(gè)數(shù)列從第二項(xiàng)起,每一項(xiàng)與它前一項(xiàng)的差等于同一個(gè)常數(shù),這個(gè)數(shù)列就叫做等差數(shù)列,這個(gè)常數(shù)就叫做等...
2025-10-05 05:43
【摘要】【高考調(diào)研】2021年高中數(shù)學(xué)課時(shí)作業(yè)11等差數(shù)列(第3課時(shí))新人教版必修51.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40B.42C.43D.45答案B解析∵a2+a3=13,∴2a1+3d=13.∵a1=2,
2025-11-19 02:12
【摘要】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當(dāng)q=1時(shí),Sn=na1{an}是公差為d的等差數(shù)列{bn}是公比為q的等比數(shù)列性質(zhì)1
2025-01-13 12:04