【摘要】第一篇:高中數(shù)學(二)新人教A版必修5 等差數(shù)列 (第一課時)[講授新課]1.等差數(shù)列:一般地,如果一個數(shù)列從第二項起,每一項與它前一項的差等于同一個常數(shù),這個數(shù)列就叫做等差數(shù)列,這個常數(shù)就叫做等...
2024-10-14 05:43
【摘要】【高考調(diào)研】2021年高中數(shù)學課時作業(yè)11等差數(shù)列(第3課時)新人教版必修51.在等差數(shù)列{an}中,已知a1=2,a2+a3=13,則a4+a5+a6等于()A.40B.42C.43D.45答案B解析∵a2+a3=13,∴2a1+3d=13.∵a1=2,
2024-11-28 02:12
【摘要】1等差數(shù)列求和公式:(1)Sn=n(a1+an)/2(2)Sn=na1+n(n-1)d/22等比數(shù)列求和公式:(1)Sn=1-qa1(1-qn)q≠1q≠1(2)Sn=1-qa1-anq當q=1時,Sn=na1{an}是公差為d的等差數(shù)列{bn}是公比為q的等比數(shù)列性質(zhì)1
2025-01-13 12:04
【摘要】1+2+3+···+100=?高斯(1777—1855)德國著名數(shù)學家得到數(shù)列1,2,3,4,…,100引例一姚明剛進NBA一周訓練罰球的個數(shù):第一天:6000,第二天:6500,第三天:7000,第四天:7500,第五天:80
2024-11-18 15:55
【摘要】余弦定理(二)課時目標、余弦定理;、余弦定理解三角形的有關問題.1.正弦定理及其變形(1)asinA=bsinB=csinC=________.(2)a=__________,b=__________,c=_____________.(3)sinA=__________,sinB=_______
2024-12-05 06:37
【摘要】第2課時等差數(shù)列1.等差數(shù)列的定義:-=d(d為常數(shù)).2.等差數(shù)列的通項公式:⑴an=a1+×d⑵an=am+×d3.等差數(shù)列的前n項和公式:Sn==.4.等差中項:如
2024-11-30 14:35
【摘要】§2等差數(shù)列第1課時等差數(shù)列的概念及通項公式知能目標解讀,理解等差數(shù)列的概念,并會用等差數(shù)列的概念判斷一個數(shù)列是否為等差數(shù)列..,能用函數(shù)的觀點解決等差數(shù)列問題.,并能運用它們解決問題..重點難點點撥重點:等差數(shù)列的概念.難點:等差數(shù)列的通項公式及其運用.學習方法指導
2024-11-19 23:27
【摘要】第一篇:高中數(shù)學必修5新教學案:(第2課時)(推薦) 必修5(學案) (第2課時) 【知識要點】 ;;;.【學習要求】 ; ,并會運用等差中項和等差數(shù)列的性質(zhì)解題;.【預習提綱】 (根據(jù)...
2024-10-26 10:00
【摘要】等差數(shù)列的前n項和2.等差數(shù)列的前n項和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項和為Sn,則該數(shù)列的通項公式為S1,n=1Sn-Sn-1,n≥2an=一、復習3.若數(shù)列{an}為等差數(shù)列:1(1)2nnnad???2,
2024-11-18 12:17
【摘要】等差數(shù)列的通項公式教學目標:1.掌握“疊加法”求等差數(shù)列通項公式的方法;2.掌握等差數(shù)列的通項公式,并能用公式解決一些簡單的問題;3.理解等差數(shù)列的性質(zhì),能熟練運用等差數(shù)列的性質(zhì)解決有關問題.教學重點:等差數(shù)列的通項公式,關鍵對通項公式含義的理解.教學難點:等差數(shù)列的性質(zhì)和應用.教學方法:
2024-11-20 01:05
【摘要】課題:等差數(shù)列的通項公式班級:姓名:學號:第學習小組【學習目標】:1、會用“疊加法”求等差數(shù)列通項公式;2、會用等差數(shù)列通項公式解決一些簡單問題。【課前預習】??na,4,7,10,13,16,?,則100a=,猜想na=
【摘要】第二章解三角形正弦定理(一)課時目標;.1.在△ABC中,A+B+C=______,A2+B2+C2=π2.2.在Rt△ABC中,C=π2,則ac=______,bc=______.3.一般地,把三角形的三個角A,B,C和它們的對邊a,b,c叫做三角形的元素.已知三角形的幾
2024-12-05 06:35
【摘要】等差數(shù)列前n項和公式的應用等差數(shù)列的前n項和公式是一個很重要的公式.對這個公式的形式和本質(zhì)特征的研究,將有助于提高我們的計算能力和分析、解決問題的能力.一、分析公式的結(jié)構(gòu)特征難得出下面的結(jié)論:中間項.2.當n是偶數(shù)時,a1與an的等差中項不是該數(shù)列的項,它的值等于數(shù)列
2024-12-03 03:12
【摘要】等比數(shù)列的前n項和(二)課時目標n項和公式的有關性質(zhì)解題.n項和公式解決實際問題.1.等比數(shù)列{an}的前n項和為Sn,當公比q≠1時,Sn=__________=__________;當q=1時,Sn=_______.2.等比數(shù)列前n項和的性質(zhì):(1)連續(xù)m項的和(如Sm、S2
【摘要】第一頁,編輯于星期六:點三十四分。,2.2等差數(shù)列第一課時等差數(shù)列的概念及通項公式,第二頁,編輯于星期六:點三十四分。,,登高攬勝拓界展懷,課前自主學習,第三頁,編輯于星期六:點三十四分。,第四頁,編...
2024-10-22 18:52