【正文】
???k2(2 x + 1 ) d x +????23(1 +x2)d x = ( x2+ x )|2k + ( x +x33)|32 = (4 + 2) - ( k2+ k ) + (3 + 9) - (2 +83) =403- ( k2+ k ) =403. 解得 k2+ k = 0 ,解得 k = 0 或 k =- 1. ( 2 ) 當 2 k ≤ 3 時, ????k3f ( x )d x =????k3(1 + x2)d x = ( x +x33)|3k = (3 + 9) - ( k +k33) =403. 即 k3+ 3 k + 4 = 0 , k3+ k2- k2+ 3 k + 4 = 0 , 所以 ( k + 1 ) ( k2- k + 4) = 0 ,所以 k =- 1. 又因為 2 k ≤ 3 ,所以 k =- 1 舍去. 綜上所述, k = 0 或 k =- 1 為所求 . 定積分的應(yīng)用 已知???- 11( x 3 + ax + 3 a - b )d x = 2 a + 6 且 f ( t ) =????0t ( x 3+ ax + 3 a - b )d x 為偶函數(shù),求 a , b . [ 分析 ] 解答本題可先把定積分的值表示出來,然后求解. [ 解析 ] ∵ f ( x ) = x3+ ax 為奇函數(shù), ∴???- 11( x3+ ax )d x = 0 , ∴???- 11( x3+ ax + 3 a - b )d x =???- 11( x3+ ax )d x +???- 11(3 a - b )d x = 0 + (3 a - b )[1 - ( - 1 ) ] = 6 a - 2 b . ∴ 6 a - 2 b = 2 a + 6 ,即 2 a - b = 3 ① 又 f ( t ) =????????x44+a2x2+ ? 3 a - b ? x ??? t0 =t44+at22+ (3 a - b ) t為偶函數(shù), ∴ 3 a - b = 0 ② 由 ①② 得 a =- 3 , b =- 9. [ 方法總結(jié) ] 利用定積分求 參數(shù)問題,主要是應(yīng)用求定積分的基本方法,把參數(shù)看成常數(shù)進行積分化簡,從已知條件中,尋求參數(shù)滿足的關(guān)系式,列方程求解. 已知函數(shù) f ( x ) =????0x ( at 2 + bt + 1 ) d t 為奇函數(shù),且 f ( 1 ) - f ( - 1) =13,求 a , b 的值. [ 解析 ] f ( x ) =????0x( at2+ bt + 1 ) d t=????????a3t3+b2t2+ t ??? x0 =a3x3+b2x2+x . ∵ f ( x ) 為奇函數(shù), ∴b2= 0 , ∴ b = 0. 又 f ( 1 ) - f ( - 1) =13得a3+ 1 +a3+ 1 =13, ∴ a =-52. 如圖,函數(shù) y = f ( x ) 在區(qū)間 [ a , b ] 上,則陰影部分的面積 S 為 ( ) A.????abf ( x )d x B.????acf ( x )d x -????cbf ( x )d x C .-????acf ( x )d x -????cbf ( x )d x D .-????acf ( x )d x +????cbf ( x )d x [錯解 ] A, B, C. [辨析 ] 在實際求解曲邊梯形的面積時要注意在 x軸上方的面積取正號 , 在 x軸下方的面積取負號 ,