【摘要】拓展資料:牛頓的故事被譽(yù)為近代科學(xué)的開創(chuàng)者牛頓,在科學(xué)上作出了巨大貢獻(xiàn)。他的三大成就——光的分析、萬有引力定律和微積分學(xué),對(duì)現(xiàn)代科學(xué)的發(fā)展奠定了基礎(chǔ)。牛頓為什么能在科學(xué)上獲得巨大成就?他怎樣由一個(gè)平常的人成為一個(gè)偉大的科學(xué)家?要回答這些問題,我們不禁要聯(lián)想到他刻苦學(xué)習(xí)和勤奮工作的幾個(gè)故事?!拔乙欢ㄒ^他!”一談到牛頓,人們可能認(rèn)為他小時(shí)
2024-11-19 23:15
【摘要】知識(shí)點(diǎn)撥:利用導(dǎo)數(shù)求函數(shù)的極值例求下列函數(shù)的極值:1.xxxf12)(3??;2.xexxf??2)(;3..212)(2???xxxf分析:按照求極值的基本方法,首先從方程0)(??xf求出在函數(shù))(xf定義域內(nèi)所有可能的極值點(diǎn),然后按照函數(shù)極值的定義判斷在這些點(diǎn)處是否取得極值.解:1.函
2024-11-19 23:16
【摘要】解剖高考對(duì)導(dǎo)數(shù)的考查要求高考對(duì)導(dǎo)數(shù)的考查要求是:①了解導(dǎo)數(shù)的實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念;②熟記導(dǎo)數(shù)的基本公式,掌握兩個(gè)函數(shù)和、差、積、商的求導(dǎo)法則,了解復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù);③理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系,了解可導(dǎo)函數(shù)在某點(diǎn)取得極
【摘要】電能機(jī)械能水力風(fēng)力溫度紅外線生物1.(單選Ⅰ,2020年廣東學(xué)業(yè)水平考試)普通電熨斗中用到的傳感器是()AA.溫度傳感器C.壓力傳感器B.生物傳感器D.聲音傳感器2.(單選Ⅰ,2020年廣東學(xué)業(yè)水平考試)家用電飯鍋使用的傳感器類型是
2024-11-17 23:49
【摘要】-*-第四章導(dǎo)數(shù)應(yīng)用-*-§1函數(shù)的單調(diào)性與極值-*-導(dǎo)數(shù)與函數(shù)的單調(diào)性首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測(cè)學(xué)習(xí)目標(biāo)思維脈絡(luò)1.結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.
2024-11-17 08:43
【摘要】歸納推理學(xué)習(xí)目標(biāo)1.結(jié)合已學(xué)過的數(shù)學(xué)實(shí)例,了解歸納推理的含義;2.能利用歸納進(jìn)行簡(jiǎn)單的推理,體會(huì)并認(rèn)識(shí)歸納推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.學(xué)習(xí)過程一、課前準(zhǔn)備在日常生活中我們常常遇到這樣的現(xiàn)象:(1)看到天空烏云密布,燕子低飛,螞蟻搬家,推斷天要下雨;(2)八月十五云遮月,來年正月十五雪打燈.以上例子可以得出推
【摘要】-*-第一章常用邏輯用語-*-§1命題首頁XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測(cè)學(xué)習(xí)目標(biāo)思維脈絡(luò)1.理解命題的定義及其構(gòu)成,會(huì)判斷一個(gè)命題的真假.2.理解四種命題及其關(guān)系,掌握互為逆否命題的等價(jià)
2024-11-17 13:32
【摘要】第三章§1理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練考點(diǎn)一考點(diǎn)二知識(shí)點(diǎn)一知識(shí)點(diǎn)二類比推理問題1:試寫出三角形的兩個(gè)性質(zhì).提示:(1)三角形的兩邊之和大于第三邊;(2)三角形的面積等于高與底乘積的12.
2024-11-18 08:09
【摘要】第3章導(dǎo)數(shù)及其應(yīng)用(A)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.物體自由落體運(yùn)動(dòng)方程為s(t)=12gt2,g=m/s2,若當(dāng)Δt無限趨近于0時(shí),s+Δt-sΔt無限趨近于m/s,那么下面說法正確的是________.(填序號(hào))
2024-12-05 09:21
【摘要】第3章導(dǎo)數(shù)及其應(yīng)用(B)(時(shí)間:120分鐘滿分:160分)一、填空題(本大題共14小題,每小題5分,共70分)1.直線y=kx+1與曲線y=x3+ax+b相切于點(diǎn)A(1,3),則b的值為________.2.已知函數(shù)f(x)=(5x+3)lnx,則f′??????13=________
【摘要】拓展資料:拉格朗日法國(guó)數(shù)學(xué)家、力學(xué)家及天文學(xué)家拉格朗日于1736年1月25日在意大利西北部的都靈出生。少年時(shí)讀了哈雷介紹牛頓有關(guān)微積分之短文,因而對(duì)分析學(xué)產(chǎn)生興趣。他亦常與歐拉有書信往來,于探討數(shù)學(xué)難題「等周問題」之過程中,當(dāng)時(shí)只有18歲的他就以純分析的方法發(fā)展了歐拉所開創(chuàng)的變分法,奠定變分法之理論基礎(chǔ)。后入都靈大學(xué)。1755年,
2024-12-05 06:37
【摘要】導(dǎo)數(shù)在實(shí)際問題中的應(yīng)用目標(biāo)認(rèn)知學(xué)習(xí)目標(biāo):1.會(huì)從幾何直觀了解函數(shù)單調(diào)性和導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間,對(duì)多項(xiàng)式函數(shù)一般不超過三次.2.了解函數(shù)在某點(diǎn)取得極值的必要條件(導(dǎo)數(shù)在極值點(diǎn)兩端異號(hào))和充分條件();會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值,對(duì)多項(xiàng)式函數(shù)一般不超過三次.3.會(huì)求閉區(qū)間上函數(shù)的
2024-12-04 23:43
【摘要】計(jì)算導(dǎo)數(shù)同步練習(xí)一,選擇題:1.曲線y=ln(2x-1)上的點(diǎn)到直線2x-y+3=0的最短距離是()A、5B、25C、35D、02、設(shè)P點(diǎn)是曲線3233???xxy上的任意一點(diǎn),P點(diǎn)處切線傾斜角為?,則角?的取值范圍是(
2024-12-05 06:39
【摘要】第三章章末小結(jié)問題1:推理一般包括合情推理和演繹推理,它們都是日常學(xué)習(xí)和生活中經(jīng)常應(yīng)用的思維方法,合情推理包括歸納推理和類比推理,具有猜測(cè)和發(fā)現(xiàn)新結(jié)論、探索和提供解決問題的思路和方向的作用;演繹推理則具有證明結(jié)論,整理和構(gòu)建知識(shí)體系的作用,是公理體系中的基本推理方法.問題2:三段論是演繹推理的主
2024-11-19 19:08
【摘要】導(dǎo)數(shù)應(yīng)用第四章§1函數(shù)的單調(diào)性與極值導(dǎo)數(shù)與函數(shù)的單調(diào)性第四章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí)結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系,能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求不超過三次的多項(xiàng)式函數(shù)的單調(diào)區(qū)間.函數(shù)的單調(diào)性與導(dǎo)函數(shù)正負(fù)的關(guān)
2024-11-16 23:23