【總結(jié)】導(dǎo)數(shù)的幾何意義【例1】曲線f(x)=x3+2x+1在點(diǎn)M處的切線的斜率為2,求M的坐標(biāo)【例2】由原點(diǎn)O向三次曲線y=x3-3ax2+bx(a≠0)引切線,切于不同于O的點(diǎn)P1(x1,y1).再由P1引曲線的切線,切于不同于P1的點(diǎn)P2(x2,y2),…,如此繼續(xù)地作下去,得到點(diǎn)列{Pn(xn,yn)},試
2024-11-19 23:16
【總結(jié)】變化率與導(dǎo)數(shù)第三章§3計(jì)算導(dǎo)數(shù)第三章課堂典例探究2課時(shí)作業(yè)3課前自主預(yù)習(xí)1課前自主預(yù)習(xí),了解冪函數(shù)的求導(dǎo)方法和規(guī)律.2.掌握基本初等函數(shù)的導(dǎo)數(shù)公式,并能利用這些公式求基本初等函數(shù)的導(dǎo)數(shù).用導(dǎo)數(shù)定義求函數(shù)的導(dǎo)數(shù)和導(dǎo)函數(shù)概念1.用導(dǎo)數(shù)的定義求函數(shù)y=
2024-11-16 23:23
【總結(jié)】實(shí)際問題中導(dǎo)數(shù)的意義一、學(xué)習(xí)要求:導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用二、學(xué)習(xí)目標(biāo)能運(yùn)用導(dǎo)數(shù)方法求解有關(guān)利潤(rùn)最大,用料最省,效率最高等最優(yōu)化問題,體會(huì)導(dǎo)數(shù)在解決實(shí)際生活問題中的作用。三、重點(diǎn)難點(diǎn)用導(dǎo)數(shù)方法解決實(shí)際生活中的問題四、要點(diǎn)梳理解應(yīng)用題的基本程序是:讀題建模求解
【總結(jié)】導(dǎo)數(shù)的幾何意義學(xué)習(xí)要求1.理解導(dǎo)數(shù)的幾何意義2.會(huì)用導(dǎo)數(shù)的定義求曲線的切線方程自學(xué)評(píng)價(jià)1、割線的斜率:已知)(xfy?圖像上兩點(diǎn)))(,(00xfxA,))(,(00xxfxxB????,過A,B兩點(diǎn)割線的斜率是_________,即曲線割線的斜率就是___________.2、函數(shù))(xfy?在點(diǎn)
2024-11-19 23:15
【總結(jié)】-*-本章整合網(wǎng)絡(luò)構(gòu)建專題探究圓錐曲線與方程橢圓定義標(biāo)準(zhǔn)方程簡(jiǎn)單性質(zhì)拋物線定義標(biāo)準(zhǔn)方程簡(jiǎn)單性質(zhì)雙曲線定義標(biāo)準(zhǔn)方程簡(jiǎn)單性質(zhì)專題探究網(wǎng)絡(luò)構(gòu)建專題一專題二專題三專題四專題一求動(dòng)點(diǎn)軌跡方程
2024-11-16 23:22
【總結(jié)】第三章§4把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練考點(diǎn)一考點(diǎn)二考點(diǎn)三理解教材新知4.1曲線與方程在平面直角坐標(biāo)系中,到兩坐標(biāo)軸距離相等的點(diǎn)的軌跡方程中.問題1:直線y=x上任一點(diǎn)M到兩坐標(biāo)軸距離相等嗎?提示:相
2024-11-17 23:14
【總結(jié)】-*-本章整合網(wǎng)絡(luò)構(gòu)建專題探究常用邏輯用語命題原命題逆命題否命題逆否命題條件充分不必要條件必要不充分條件充要條件既不充分也不必要條件全
【總結(jié)】第三章§4理解教材新知把握熱點(diǎn)考向應(yīng)用創(chuàng)新演練考點(diǎn)一考點(diǎn)二考點(diǎn)三1.問題:在今天商品大戰(zhàn)中,廣告成了電視節(jié)目中的一道美麗的風(fēng)景線,幾乎所有的廣告商都熟諳這樣的命題變換藝術(shù).如宣傳某種食品,其廣告詞為:“擁有的人們都幸福,幸福的人們都擁有”.該廣告詞實(shí)際說明了
2024-11-18 08:08
【總結(jié)】變化率問題微積分主要與四類問題的處理相關(guān):?一、已知物體運(yùn)動(dòng)的路程作為時(shí)間的函數(shù),求物體在任意時(shí)刻的速度與加速度等;?二、求曲線的切線;?三、求已知函數(shù)的最大值與最小值;?四、求長(zhǎng)度、面積、體積和重心等。導(dǎo)數(shù)是微積分的核心概念之一它是研究函數(shù)增減、變化快慢、最大(小)值等問題最一般、最有效的工具。問題1氣
2024-11-17 12:02
【總結(jié)】拓展資料:牛頓的故事被譽(yù)為近代科學(xué)的開創(chuàng)者牛頓,在科學(xué)上作出了巨大貢獻(xiàn)。他的三大成就——光的分析、萬有引力定律和微積分學(xué),對(duì)現(xiàn)代科學(xué)的發(fā)展奠定了基礎(chǔ)。牛頓為什么能在科學(xué)上獲得巨大成就?他怎樣由一個(gè)平常的人成為一個(gè)偉大的科學(xué)家?要回答這些問題,我們不禁要聯(lián)想到他刻苦學(xué)習(xí)和勤奮工作的幾個(gè)故事?!拔乙欢ㄒ^他!”一談到牛頓,人們可能認(rèn)為他小時(shí)
【總結(jié)】知識(shí)點(diǎn)撥:利用導(dǎo)數(shù)求函數(shù)的極值例求下列函數(shù)的極值:1.xxxf12)(3??;2.xexxf??2)(;3..212)(2???xxxf分析:按照求極值的基本方法,首先從方程0)(??xf求出在函數(shù))(xf定義域內(nèi)所有可能的極值點(diǎn),然后按照函數(shù)極值的定義判斷在這些點(diǎn)處是否取得極值.解:1.函
【總結(jié)】解剖高考對(duì)導(dǎo)數(shù)的考查要求高考對(duì)導(dǎo)數(shù)的考查要求是:①了解導(dǎo)數(shù)的實(shí)際背景(如瞬時(shí)速度、加速度、光滑曲線切線的斜率等),掌握函數(shù)在一點(diǎn)處的導(dǎo)數(shù)的定義和導(dǎo)數(shù)的幾何意義,理解導(dǎo)數(shù)的概念;②熟記導(dǎo)數(shù)的基本公式,掌握兩個(gè)函數(shù)和、差、積、商的求導(dǎo)法則,了解復(fù)合函數(shù)的求導(dǎo)法則,會(huì)求某些簡(jiǎn)單函數(shù)的導(dǎo)數(shù);③理解可導(dǎo)函數(shù)的單調(diào)性與其導(dǎo)數(shù)的關(guān)系,了解可導(dǎo)函數(shù)在某點(diǎn)取得極
【總結(jié)】電能機(jī)械能水力風(fēng)力溫度紅外線生物1.(單選Ⅰ,2020年廣東學(xué)業(yè)水平考試)普通電熨斗中用到的傳感器是()AA.溫度傳感器C.壓力傳感器B.生物傳感器D.聲音傳感器2.(單選Ⅰ,2020年廣東學(xué)業(yè)水平考試)家用電飯鍋使用的傳感器類型是
2024-11-17 23:49
【總結(jié)】-*-第四章導(dǎo)數(shù)應(yīng)用-*-§1函數(shù)的單調(diào)性與極值-*-導(dǎo)數(shù)與函數(shù)的單調(diào)性首頁(yè)XINZHIDAOXUE新知導(dǎo)學(xué)ZHONGNANTANJIU重難探究DANGTANGJIANCE當(dāng)堂檢測(cè)學(xué)習(xí)目標(biāo)思維脈絡(luò)1.結(jié)合實(shí)例,借助幾何直觀探索并了解函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.
2024-11-17 08:43
【總結(jié)】歸納推理學(xué)習(xí)目標(biāo)1.結(jié)合已學(xué)過的數(shù)學(xué)實(shí)例,了解歸納推理的含義;2.能利用歸納進(jìn)行簡(jiǎn)單的推理,體會(huì)并認(rèn)識(shí)歸納推理在數(shù)學(xué)發(fā)現(xiàn)中的作用.學(xué)習(xí)過程一、課前準(zhǔn)備在日常生活中我們常常遇到這樣的現(xiàn)象:(1)看到天空烏云密布,燕子低飛,螞蟻搬家,推斷天要下雨;(2)八月十五云遮月,來年正月十五雪打燈.以上例子可以得出推