【摘要】......高考圓錐曲線的常見題型典型例題題型一:定義的應(yīng)用例1、動圓M與圓C1:(x+1)2+y2=36內(nèi)切,與圓C2:(x-1)2+y2=4外切,求圓心M的軌跡方程。例2、方程表示
2025-03-24 03:56
【摘要】......高考圓錐曲線的常見題型典型例題題型一:定義的應(yīng)用例1、動圓M與圓C1:(x+1)2+y2=36內(nèi)切,與圓C2:(x-1)2+y2=4外切,求圓心M的軌跡方程。例2、
2025-03-24 05:26
【摘要】大慶目標教育圓錐曲線一、知識結(jié)構(gòu)在平面直角坐標系中,如果某曲線C(看作適合某種條件的點的集合或軌跡)上的點與一個二元方程f(x,y)=0的實數(shù)解建立了如下的關(guān)系:(1)曲線上的點的坐標都是這個方程的解;(2);這條曲線叫做方程的曲線.點與曲線的關(guān)系若曲線C的方程是f(x,y)=0,則點P0(x0,y0)在曲線C上f(x0,y0)=0;點P0(x0,y0)
2025-08-04 14:02
【摘要】精心整理,祝高考學(xué)子有好成績高考圓錐曲線試題精選一、選擇題:(每小題5分,計50分)1、(2008海南、寧夏文)雙曲線的焦距為()A.3 B.4 C.3 D.42.(2004全國卷Ⅰ文、理)橢圓的兩個焦點為F1、F2,過F1作垂直于x軸的直線與橢圓相交,一個交點為P,則=() A.B.C.D.43.(
2025-08-05 18:10
【摘要】WORD資料可編輯第五篇高考解析幾何萬能解題套路解析幾何——把代數(shù)的演繹方法引入幾何學(xué),用代數(shù)方法來解決幾何問題。與圓錐曲線有關(guān)的幾種典型題,如圓錐曲線的弦長求法、與圓錐曲線有關(guān)的最值(極值)問題、與圓錐曲線有關(guān)的證明問題以及圓錐曲線與圓錐曲線有關(guān)的證明問題等,
2025-04-17 13:05
【摘要】......高考圓錐曲線知識點匯總知識摘要:1、數(shù)學(xué)探索?.橢圓的簡單幾何性質(zhì).橢圓的參數(shù)方程.2、數(shù)學(xué)探索?.雙曲線的簡單幾何性質(zhì).3、數(shù)學(xué)探索?.拋物線的簡單幾何性質(zhì).一
【摘要】WORD資料可編輯圓錐曲線自編講義之基本量要求熟悉圓錐曲線的a、b、c、e、p、漸近線方程、準線方程、焦點坐標等數(shù)據(jù)的幾何意義和相互關(guān)系。(2011安徽理2)雙曲線的實軸長是 (A)2 (B)2 (C)4 (D)4【答案】C
2025-04-17 00:20
【摘要】WORD資料可編輯高三文科數(shù)學(xué)專題復(fù)習(xí)之圓錐曲線知識歸納:名稱橢圓雙曲線圖象定義平面內(nèi)到兩定點的距離的和為常數(shù)(大于)的動點的軌跡叫橢圓即當2﹥2時,軌跡
2025-04-17 13:10
【摘要】圓錐曲線,,直線與其相交于兩點,中點的橫坐標為,則此雙曲線的方程是A.B.C.D.21.(本小題滿分14分)已知常數(shù),向量,,,經(jīng)過原點以為方向向量的直線與經(jīng)過定點以為方向向量的直線相交于點,:是否存在兩個定點,,求出的坐標;若不存在,說明理由.
2025-04-17 07:02
【摘要】圓錐曲線復(fù)習(xí)提綱一、基礎(chǔ)知識:(一)橢圓與雙曲線名稱橢圓雙曲線定義類型焦點在軸上焦點在軸上焦點在軸上焦點在軸上圖象標準方程性質(zhì)焦點范圍頂點漸近線無無軸長離心率對稱性
2025-04-17 01:53
【摘要】第1頁共35頁普通高中課程標準實驗教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座35)—曲線方程及圓錐曲線的綜合問題一.課標要求:1.由方程研究曲線,特別是圓錐曲線的幾何性質(zhì)問題?;癁榈仁浇鉀Q,要加強等價轉(zhuǎn)化思想的訓(xùn)練;2.通過圓錐曲線與方程的學(xué)習(xí),進一步體會數(shù)形結(jié)合的思想;3.了解圓錐曲線
2025-07-28 15:29
【摘要】完美WORD格式專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標準方程;(Ⅱ)證明:在軸上存在定點,使得為定值;并求出該定點的坐標.【答案】(1)(2)【解析】試題分析:(Ⅰ)設(shè)圓過橢圓的上、下、
2025-08-05 19:26
【摘要】........專題08解鎖圓錐曲線中的定點與定值問題一、解答題1.【陜西省榆林市第二中學(xué)2018屆高三上學(xué)期期中】已知橢圓的左右焦點分別為,離心率為;.(Ⅰ)求橢圓的標準方程;(Ⅱ)證明:在軸上存在定點,使得為定值;并求出該定點的坐標.【答案
2025-04-17 12:52
【摘要】橢圓中的相關(guān)問題一、橢圓中的最值問題:,內(nèi)有一點,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.,,為橢圓上任意一點,若要求最小,則這最小值是()A.B.C.D.3.橢圓上任一點橢圓到兩焦點橢圓,的距離之積的最大值是,最小值是。4.設(shè),則的
2025-07-21 11:38
【摘要】第十章圓錐曲線★知識網(wǎng)絡(luò)★橢圓雙曲線拋物線定義定義定義標準方程標準方程幾何性質(zhì)幾何性質(zhì)應(yīng)用應(yīng)用標準方程幾何性質(zhì)應(yīng)用圓錐曲線直線與圓錐曲線位置關(guān)系相交相切相離圓錐曲線的弦第1講橢圓★知識梳理★1.橢圓定義:(1)第一定義:平面內(nèi)與兩個定點的距離之和為常數(shù)的動點的軌跡叫橢圓,
2025-08-04 09:58