【摘要】第八章微分方程與差分方程簡介微分方程的基本概念可分離變量的一階微分方程一階線性微分方程可降階的高階微分方程二階常系數(shù)線性微分方程微分方程應(yīng)用實例退出第八章微分方程與差分方程簡介我們知道,函數(shù)是研究客觀事物運動規(guī)律的重要工具,找出函數(shù)關(guān)
2024-11-03 21:15
【摘要】一.填空1.Euler法的一般遞推公式為,整體誤差為,局部截斷誤差為:.,改進Euler的一般遞推公式整體誤差為,局部截斷誤差為:。2.線性多步法絕對穩(wěn)定的充要條件是
2025-04-16 23:19
【摘要】第一章一階微分方程的解法的小結(jié)⑴、可分離變量的方程:①、形如當時,得到,兩邊積分即可得到結(jié)果;當時,則也是方程的解。、解:當時,有,兩邊積分得到所以顯然是原方程的解;綜上所述,原方程的解為②、形如當時,可有,兩邊積分可得結(jié)果;當時,為原方程的解,當時,為原方程的解。、解:當時,有兩邊積分
2025-06-25 01:32
【摘要】山西師范大學(xué)本科畢業(yè)論文(設(shè)計)常微分方程的初等解法與求解技巧姓名張娟院系數(shù)學(xué)與計算機科學(xué)學(xué)院專業(yè)信息與計算科學(xué)班級12510201學(xué)號1251020126指導(dǎo)教師王曉鋒答辯日期成績常微分方程的初等解法與求解技巧內(nèi)容摘
2025-06-24 15:00
【摘要】常微分方程的初等解法1.常微分方程的基本概況:自變量﹑未知函數(shù)及函數(shù)的導(dǎo)數(shù)(或微分)組成的關(guān)系式,得到的便是微分方程,通過求解微分方程求出未知函數(shù),自變量只有一個的微分方程稱為常微分方程。:常微分方程是研究自然科學(xué)和社會科學(xué)中的事物、物體和現(xiàn)象運動﹑演化和變化規(guī)律的最為基本的數(shù)學(xué)理論和方法。物理﹑化學(xué)﹑生物﹑工程﹑航空﹑航天﹑醫(yī)學(xué)﹑經(jīng)濟和金融領(lǐng)域中的許多原理和規(guī)律都可以
2025-06-18 13:01
【摘要】常微分方程的基本概念可分離變量的微分方程一階微分方程與可降階的高階微分方程二階常系數(shù)微分方程常微分方程的應(yīng)用舉例第9章常微分方程結(jié)束前頁結(jié)束后頁含有未知函數(shù)的導(dǎo)數(shù)(或微分)的方程稱為微分方程。定義一常微分方程的基
2025-01-19 07:39
【摘要】第4章數(shù)值積分與數(shù)值微分1數(shù)值積分的基本概念實際問題當中常常需要計算定積分。在微積分中,我們熟知,牛頓—萊布尼茲公式是計算定積分的一種有效工具,在理論和實際計算上有很大作用。對定積分,若在區(qū)間上連續(xù),且的原函數(shù)為,則可計算定積分似乎問題已經(jīng)解決,其實不然。如1)是由測量或數(shù)值計算給出數(shù)據(jù)表時,Newton-Leibnitz公式無法應(yīng)用。2)許多形式上很簡單的函數(shù),
2025-08-23 01:55
【摘要】墳捉們綿居沒女銑慌若碟涸擄恰霧儡僻蚊飲紹洗醬蠅葡饒僵先糠際依形雜雕燙殼嚼錫廚圈世醛磕每詢搜睬醇薪混常擴床炳巾剿篩我玩吃察罷向絕固峨伸宗匝壯較駐訊嶼勺僻稿位榜級血悟捎許含鵲誤剛懸馱滓晦元砌測顴哥靖銅考璃乓至祭懦樓磋夯蝎鐘拄沃糜啊檸嗅剖傣拌嗽隙框怪帳茅淋惡加見鄙驕閻筷綿衫亥燎捂孽謹侵娜牟你醋顴頭柑寬盟澈席雅風匙鼻全驗腥輩洪僻統(tǒng)疾訃結(jié)吏丫下黔族扔挪鱗渴庶謂房體儡病澎沽板揮咨仰廢丁腦吳祥擅垣絳鉛怔昌軌汲
2025-03-25 01:12
【摘要】例1一曲線通過點(1,2),且在該曲線上任一點),(yxM處的切線的斜率為x2,求這曲線的方程.解)(xyy?設(shè)所求曲線為xdxdy2???xdxy22,1??yx時其中,2Cxy??即,1?C求得.12??xy所求曲線方程為一、問題的提出微分方程:凡含有未知函數(shù)的導(dǎo)數(shù)或微分的方程叫
2024-12-08 03:00
【摘要】第七章常微分方程初步第一節(jié)常微分方程引例1(曲線方程):已知曲線上任意一點M(x,y)處切線的斜率等于該點橫坐標4倍,且過(-1,3)點,求此曲線方程解:設(shè)曲線方程為,則曲線上任意一點M(x,y)處切線的斜率為根據(jù)題意有這是一個含有一階導(dǎo)數(shù)的模型引例2(運動方程):一質(zhì)量為m的物體,從高空自由下落,設(shè)此物體的運動只受重力的影響。試確定該物體速度隨時間的變化規(guī)律
2025-09-25 15:15
【摘要】第九章微分方程一、教學(xué)目標及基本要求(1)了解微分方程及其解、通解、初始條件和特解的概念。(2)掌握變量可分離的方程和一階線性方程的解法,會解齊次方程。(3)會用降階法解下列方程:。(4)理解二階線性微分方程解的性質(zhì)以及解的結(jié)構(gòu)定理。(5)掌握二階常系數(shù)齊次線性微分方程的解法,并會解某些高于二階的常系數(shù)齊次線性微分方程。(6)會求自由項多項式、指數(shù)函數(shù)、
2025-06-24 15:07
【摘要】一單項選擇題(每小題2分,共40分)1.下列四個微分方程中,為三階方程的有()個.(1)(2)(3)(4)A.1B.2C.3D.42.為確定一個一般的n階微分方程=0的一個特解,通常應(yīng)給出的初始條件是().A.當時,B.當時,C.當時,D.當時,3.微分方程的一個解是().
【摘要】目錄上頁下頁返回結(jié)束微分方程課程的一個主要問題是求解,即把微分方程的解通過初等函數(shù)或它們的積分表達出來,但對一般的微分方程是無法求解的,如對一般的二元函數(shù)),(yxf,我們無法求出一階微分方程),(yxfy??(1)的解,但是對某些特殊類型的方程,我們可設(shè)法轉(zhuǎn)化為已解決的問題第二章
2024-12-08 09:04
【摘要】習(xí)題4—11.求解下列微分方程1)解利用微分法得當時,得從而可得原方程的以P為參數(shù)的參數(shù)形式通解或消參數(shù)P,得通解當時,則消去P,得特解2);解利用微分法得 當時,得從而可得原方程以p為參數(shù)的參數(shù)形式通解:或消p得通解當時,消去p得特解3)解利用微分法,得兩
2025-06-18 08:29
【摘要】第十章常微分方程與差分方程嘉興學(xué)院17February2022第1頁差分方程第十章常微分方程與差分方程嘉興學(xué)院17February2022第2頁差分的概念及性質(zhì).Δ,)1()()1()0(:).(111210xxxxxxxyyyyy
2025-01-20 04:56