【總結(jié)】不等式的證明(二)高三備課組反證法:從否定結(jié)論出發(fā),經(jīng)過邏輯推理,導(dǎo)出矛盾,證實結(jié)論的否定是錯誤的,從而肯定原結(jié)論是正確的證明方法。換元法:換元法是指結(jié)構(gòu)較為復(fù)雜、量與量之間關(guān)系不很明了的命題,通過恰當(dāng)引入新變量,代換原題中的部分式子,簡化原有結(jié)構(gòu),使其轉(zhuǎn)化為便于研究的形式。用換元法證明不等式時一定要注意新元的約
2025-07-24 02:36
【總結(jié)】柯西不等式的證明及應(yīng)用(河西學(xué)院數(shù)學(xué)系01(2)班甘肅張掖734000)摘要:柯西不等式是一個非常重要的不等式,靈活巧妙的應(yīng)用它,可以使一些較為困難的問題迎刃而解。本文在證明不等式,解三角形相關(guān)問題,求函數(shù)最值,解方程等問題的應(yīng)用方面給出幾個例子。關(guān)鍵詞:柯西不等式證明應(yīng)用中圖分類號:O178
2025-06-23 14:21
【總結(jié)】第一篇:排序不等式及證明 四、排序不等式 【】 (一)概念9:設(shè)有兩組實數(shù) a1,a2,×××,an(1)b1,b2,×××,bn(2)滿足 a1£a2£×××£an(3)b1£b2£×××...
2024-11-06 03:16
【總結(jié)】第一篇:單調(diào)性證明不等式 單調(diào)性證明不等式 x證明e≥x+:記K(x)=e-x-1,則K′(x)=e-1,當(dāng)x∈(0,1)時,K′(x)>0,因此K(x) 在[0,1]上是增函數(shù),故K(x)≥K...
2024-10-30 23:20
【總結(jié)】精品資源不等式證明的種種策略不等式證明教材中只給出幾種證明方法如比較法、分析法、綜合法來證明不等式。而實際上證明不等式的方法是名目繁多的,所使用的方法可以涉及到函數(shù)、數(shù)列、導(dǎo)數(shù)、三角函數(shù)、向量等許多方面的知識點,同時掌握好證明不等式的方法對于加深理解這些知識點又起著深化作用。下面我們拋開比較法、分析法、綜合法去闡述證明不等式的其他方法。。:分析:用代數(shù)方法來證明該題是較
2025-06-26 04:15
【總結(jié)】 不等式的證明一、素質(zhì)教育目標(biāo)1、知識教學(xué)點⑴證明不等式的方法—比較法⑵證明不等式的方法—綜合法⑶證明不等式的方法—分析法2、能力訓(xùn)練點 通過證明不等式的訓(xùn)練進一步培養(yǎng)邏輯推理論證能力,培養(yǎng)分析問題、解決問題的能力。二、學(xué)法指導(dǎo) 證明不等式就是要證明所給不等式在給定條件下恒成立,由于不等式的形式多種多樣,所以證明不等式的方法也就靈活多樣,具體問題具體分析是
2025-08-21 17:07
【總結(jié)】設(shè)X為一n維賦范空間,其范數(shù)定義為||x||p=i=1n|xi|p1p,1≤p∞,證明以下命題:1.||x||2≤||x||1≤n|x|2;2.||x||p≤||x||1;3.||x||q≤||x||p≤n1p-1q|x|q,pq證:1.先證||x||2≤||x||1|x1|2+|x2|2≤(|x1|+|x2|)2?(|x1|2+|x
2025-06-18 14:02
【總結(jié)】Holder不等式與Minkowski不等式的證明赫德(Holder)不等式是通過Young不等式來證明的,而閔可夫斯基(Minkowski)不等式是通過赫德(Holder)不等式來證明的.Young不等式如果x,y0?,實數(shù)p1?以及實數(shù)q?滿足1?p??+1?q??
2025-06-18 23:25
【總結(jié)】第一篇:賦值法證明不等式 賦值法證明不等式的有關(guān)問題 1、已知函數(shù)f(x)=lnx (1)、求函數(shù)g(x)=(x+1)f(x)-2x+2(x31)的最小值; (2)、當(dāng)0 222a(b-a)...
2024-10-29 06:45
【總結(jié)】第一篇:不等式證明經(jīng)典[精選] 金牌師資,笑傲高考 2013年數(shù)學(xué)VIP講義 【例1】設(shè)a,b∈R,求證:a2+b2≥ab+a+b-1。 【例2】已知0 【例3】設(shè)A=a+d,B=b+c,a...
2024-11-08 22:00
【總結(jié)】第一篇:利用導(dǎo)數(shù)證明不等式 利用導(dǎo)數(shù)證明不等式 例1.已知x0,求證:xln(1+x)分析:設(shè)f(x)=x-lnx。x?[0,+¥)??紤]到f(0)=0,要證不等式變?yōu)椋簒0時,f(x)f...
2024-10-27 18:46
【總結(jié)】第一篇:sos方法證明不等式 數(shù)學(xué)競賽講座 SOS方法證明不等式(sumofsquares) S=A-B=Sa(b-c)+Sb(c-a)+Sc(a-b)30 性質(zhì)一:若Sa,Sb,Sc30,則...
2024-10-28 23:36
【總結(jié)】第一篇:證明不等式方法探析 §1不等式的定義 用不等號將兩個解析式連結(jié)起來所成的式子。在一個式子中的數(shù)的關(guān)系,不全是等號,含 sinx£1,ex>0,2x<3,5x15不等符號的式子,+2y32...
2024-11-15 06:26
【總結(jié)】第一篇:放縮法與不等式的證明 放縮法與不等式的證明 我們知道,“放”和“縮”是證明不等式時最常用的推證技巧,但經(jīng)教學(xué)實踐告訴我們,這種技巧卻是不等式證明部分的一個教學(xué)難點。學(xué)生在證明不等式時,常因...
2024-10-28 03:46
【總結(jié)】第一篇:證明不等式的幾種方法 證明不等式的幾種方法 黃啟泉 04數(shù)學(xué)與應(yīng)用數(shù)學(xué)1班30號 近幾年來,有關(guān)不等式的證明問題在高考、競賽中屢見不鮮,由于不等式的證明綜合性強,對學(xué)生的思維靈活性與創(chuàng)...
2024-11-03 22:04