【總結(jié)】......二輪專題(十一)導(dǎo)數(shù)與不等式證明【學(xué)習(xí)目標】1.會利用導(dǎo)數(shù)證明不等式.2.掌握常用的證明方法.【知識回顧】一級排查:應(yīng)知應(yīng)會,利用新函數(shù)的單調(diào)性或最值解決不等式的證明問題.比如要證明
2025-04-17 00:39
【總結(jié)】第一篇:不等式的多種證明方法 不等式的多種證明方法汪洋,合肥師范學(xué)院 摘要:數(shù)學(xué)是生活中的一門自然科學(xué),而不等式則是構(gòu)成這門自然科學(xué)的眾多基礎(chǔ)中相當(dāng)重要的組成之一,因此本文專門介紹不等式的各種證明...
2024-10-29 00:24
【總結(jié)】第一篇:不等式證明的若干方法 不等式證明的若干方法 摘要:無論是在初等數(shù)學(xué)還是在高等數(shù)學(xué)中,,高等數(shù)學(xué)中不等式證明的常用方法有利用函數(shù)的單調(diào)性、Cauchy不等式、中值定理、泰勒公式、Jensen...
2024-10-28 22:36
【總結(jié)】第一篇:均值不等式的證明方法 柯西證明均值不等式的方法byzhangyuong(數(shù)學(xué)之家) 本文主要介紹柯西對證明均值不等式的一種方法,這種方法極其重要。一般的均值不等式我們通??紤]的是An3Gn...
2024-10-27 15:16
【總結(jié)】數(shù)列不等式證明的幾種方法數(shù)列和不等式都是高中數(shù)學(xué)重要內(nèi)容,這兩個重點知識的聯(lián)袂、交匯融合,更能考查學(xué)生對知識的綜合理解與運用的能力。這類交匯題充分體現(xiàn)了“以能力立意”的高考命題指導(dǎo)思想和“在知識網(wǎng)絡(luò)交匯處”設(shè)計試題的命題原則。下面就介紹數(shù)列不等式證明的幾種方法,供復(fù)習(xí)參考。一、巧妙構(gòu)造,利用數(shù)列的單調(diào)性例1.對任意自然數(shù)n,求證:。證明:構(gòu)造數(shù)列。所以,即為單調(diào)遞增數(shù)列
2025-07-23 16:02
【總結(jié)】高二數(shù)學(xué)(必修五)多媒體課件基本不等式的證明【問題1】把一個物體放在天平的一個盤子上,在另一個盤子上放砝碼使天平平衡,稱得物體的質(zhì)量為,天平的兩臂長略有不同(其它因素不計),那么并非實際質(zhì)量.不過,我們可作第二次測量:把物體調(diào)換到天平的另一盤上,此時稱得物體的質(zhì)量為的質(zhì)量呢?:
2024-08-14 03:53
【總結(jié)】數(shù)學(xué)教案-不等式的證明教學(xué)目標1.進一步熟練掌握比較法證明不等式;2.了解作商比較法證明不等式;3.提高學(xué)生解題時應(yīng)變能力.教學(xué)重點比較法的應(yīng)用教學(xué)難點常見解題技巧教學(xué)方法啟發(fā)引導(dǎo)式教學(xué)活動(一)導(dǎo)入新課(教師活動)教師打出字幕(復(fù)習(xí)提問),請三位同學(xué)回答問題,教師點評.(學(xué)
2024-11-24 20:56
【總結(jié)】不等式的證明(一)【學(xué)習(xí)目標】掌握用比較法證明不等式【學(xué)法指導(dǎo)】比較法包括作差法和作商法兩種(1)作差法的一般步驟:作茶-變形-判斷符號(2)作商法的一般步驟:作商-變形-與比較大小【知識拓展】作差法中常用的變形手段是分解因式和配方等變形,前者將差化為積,后者將差化為一個完全平方或幾個完全平方式的和,也可二者并用,作商法常用于指數(shù)式的不等式的證明或比較大小
2024-08-26 10:29
【總結(jié)】第一篇:不等式的證明方法探究 不等式的證明方法探究 不等式的證明是高中數(shù)學(xué)的一個難點,題型較多,涉及的知識面多,證明方法靈活,本文通過一些實例,歸納總結(jié)了證明不等式時常用的方法和技巧。 1.比較...
2024-10-28 23:37
【總結(jié)】不等式的證明(二)高三備課組反證法:從否定結(jié)論出發(fā),經(jīng)過邏輯推理,導(dǎo)出矛盾,證實結(jié)論的否定是錯誤的,從而肯定原結(jié)論是正確的證明方法。換元法:換元法是指結(jié)構(gòu)較為復(fù)雜、量與量之間關(guān)系不很明了的命題,通過恰當(dāng)引入新變量,代換原題中的部分式子,簡化原有結(jié)構(gòu),使其轉(zhuǎn)化為便于研究的形式。用換元法證明不等式時一定要注意新元的約
2025-07-24 02:36
【總結(jié)】第一篇:基本不等式的證明 重要不等式及其應(yīng)用教案 教學(xué)目的 (1)使學(xué)生掌握基本不等式a2+b2≥2ab(a、b∈R,當(dāng)且僅當(dāng)a=b時取“=”號)和a3+b3+c3≥3abc(a、b、c∈R+,...
2024-10-27 20:07
【總結(jié)】河南師范大學(xué)本科畢業(yè)論文重慶師范大學(xué)本科畢業(yè)論文 學(xué)號:20080511757用高等數(shù)學(xué)知識求函數(shù)極限的探究學(xué)院名稱:數(shù)學(xué)學(xué)院專業(yè)名稱:數(shù)學(xué)與應(yīng)用數(shù)學(xué)年級班別:2008級4班姓名:朱興杭指導(dǎo)教師:張
2024-08-30 15:17
【總結(jié)】精品資源證明不等式的幾種常用方法證明不等式除了教材中介紹的三種常用方法,即比較法、綜合法和分析法外,在不等式證明中,不僅要用比較法、綜合法和分析法,根據(jù)有些不等式的結(jié)構(gòu),恰當(dāng)?shù)剡\用反證法、換元法或放縮法還可以化難為易.下面幾種方法在證明不等式時也經(jīng)常使用.一、反證法如果從正面直接證明,有些問題確實相當(dāng)困難,容易陷入多個元素的重圍之中,而難以自拔,此時可考慮用間接法予以證明,反證法
2025-04-08 04:10
【總結(jié)】第一篇:不等式證明20法 不等式證明方法大全 1、比較法(作差法) 在比較兩個實數(shù)a和b的大小時,可借助a-b的符號來判斷。步驟一般為:作差——變形——判斷(正號、負號、零)。變形時常用的方法有...
2024-10-28 23:16
【總結(jié)】第一篇:構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明不等式 構(gòu)造函數(shù)證明:e的(4n-4)/6n+3)次方 不等式兩邊取自然對數(shù)(嚴格遞增)有: ln(2^2/2^2-1)+ln(3^2/3^2-1)+...
2024-10-31 14:46