【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》瞬時(shí)變化率導(dǎo)數(shù)(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.理解并掌握曲線(xiàn)在某一點(diǎn)處的切線(xiàn)的概念;2.理解并掌握曲線(xiàn)在一點(diǎn)處的切線(xiàn)的斜率的定義以及切線(xiàn)方程的求法;3.理解切線(xiàn)概念的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化問(wèn)題的能力及數(shù)形結(jié)合思想.
2024-12-05 06:44
【總結(jié)】1.3.3最大值與最小值【學(xué)習(xí)要求】1.理解函數(shù)最值的概念,了解其與函數(shù)極值的區(qū)別與聯(lián)系.2.會(huì)用導(dǎo)數(shù)求某定義域上函數(shù)的最值.【學(xué)法指導(dǎo)】弄清極值與最值的區(qū)別是學(xué)好本節(jié)的關(guān)鍵.函數(shù)的最值是一個(gè)整體性的概念.函數(shù)極值是在局部上對(duì)函數(shù)值的比較,具有相對(duì)性;而函數(shù)的最值則是表示函數(shù)在整個(gè)定義域上的情況,是對(duì)
2025-11-08 23:19
【總結(jié)】本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練1.3.1單調(diào)性【學(xué)習(xí)要求】1.結(jié)合實(shí)例,直觀(guān)探索并掌握函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系.2.能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,并能夠利用單調(diào)性證明一些簡(jiǎn)單的不等式.3.會(huì)求函數(shù)的單調(diào)區(qū)間(其中多項(xiàng)式函數(shù)一般不超過(guò)三次).【學(xué)法指導(dǎo)】結(jié)合
2025-11-09 08:08
【總結(jié)】本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練1.1.1平均變化率【學(xué)習(xí)要求】1.理解并掌握平均變化率的概念.2.會(huì)求函數(shù)在指定區(qū)間上的平均變化率.3.能利用平均變化率解決或說(shuō)明生活中的實(shí)際問(wèn)題.【學(xué)法指導(dǎo)】平均變化率可以刻畫(huà)函數(shù)值在某個(gè)范圍內(nèi)變化的快慢程度,理解
2025-11-08 23:13
【總結(jié)】江蘇省建陵高級(jí)中學(xué)2021-2021學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)概念導(dǎo)學(xué)案(無(wú)答案)蘇教版選修1-1【學(xué)習(xí)任務(wù)】1.了解導(dǎo)數(shù)的概念.2.掌握用導(dǎo)數(shù)的定義求導(dǎo)數(shù)的一般方法.3.在了解導(dǎo)數(shù)與幾何意義的基礎(chǔ)上,加深對(duì)導(dǎo)數(shù)概念的理解.【課前預(yù)習(xí)】1、函數(shù)223yxx??在3x?時(shí)的導(dǎo)數(shù)為,在
2024-12-04 18:01
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》常見(jiàn)函數(shù)的導(dǎo)數(shù)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.能根據(jù)導(dǎo)數(shù)的定義推導(dǎo)部分基本初等函數(shù)的導(dǎo)數(shù)公式;2.能利用導(dǎo)數(shù)公式求簡(jiǎn)單函數(shù)的導(dǎo)數(shù).教學(xué)重點(diǎn):基本初等函數(shù)的導(dǎo)數(shù)公式的應(yīng)用.課前預(yù)習(xí):1.在上一節(jié)中,我們用割線(xiàn)逼近切線(xiàn)的方法引入了導(dǎo)數(shù)的概念,那么如何求函數(shù)的導(dǎo)數(shù)呢
【總結(jié)】【課堂新坐標(biāo)】(教師用書(shū))2021-2021學(xué)年高中數(shù)學(xué)常見(jiàn)函數(shù)的導(dǎo)數(shù)課后知能檢測(cè)蘇教版選修1-1一、填空題1.已知f(x)=1x3,則f′(1)=________.【解析】∵f(x)=1x3=x-3,∴f′(x)=-3x-4,∴f′(1)=-3×1-4=-3.【答案】
2024-12-04 20:01
【總結(jié)】章末檢測(cè)一、選擇題1.物體運(yùn)動(dòng)的方程為s=14t4-3,則t=5時(shí)的瞬時(shí)速度為()A.5B.25C.125D.6252.函數(shù)y=x2cosx的導(dǎo)數(shù)為()A.y′=2xcosx-x2sinxB.y′=2xcosx+x
2025-11-10 10:30
【總結(jié)】導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用教學(xué)過(guò)程:一、復(fù)習(xí)引入::一般地,設(shè)函數(shù)f(x)在點(diǎn)x0附近有定義,如果對(duì)x0附近的所有的點(diǎn),都有f(x)<f(x0),就說(shuō)f(x0)是函數(shù)f(x)的一個(gè)極大值,記作y極大值=f(x0),x0是極大值點(diǎn)奎屯王新敞新疆:一般地,設(shè)函數(shù)f(x)在x0附近有定義,如果對(duì)x0附近的所有的點(diǎn)
2024-12-08 13:49
【總結(jié)】函數(shù)的極值【學(xué)習(xí)要求】了解函數(shù)極值的定義,會(huì)從幾何圖形直觀(guān)理解函數(shù)的極值與其導(dǎo)數(shù)的關(guān)系,增強(qiáng)自己的數(shù)形結(jié)合意識(shí);掌握利用導(dǎo)數(shù)求函數(shù)的極值的一般步驟.【提問(wèn)引入】請(qǐng)同學(xué)們觀(guān)察下圖.極值的概念:
2024-12-05 06:34
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》復(fù)習(xí)3導(dǎo)學(xué)案蘇教版選修1-1復(fù)習(xí)要求:..簡(jiǎn)單的多項(xiàng)式、分式函數(shù)的導(dǎo)數(shù).數(shù).課前預(yù)習(xí):1.知識(shí)要點(diǎn)回顧:(1)導(dǎo)數(shù)的概念:(2)導(dǎo)數(shù)的幾何意義:函數(shù)f(x)在點(diǎn)x0處的導(dǎo)數(shù)f′(x0)的幾何意義是曲線(xiàn)y=f(x)在點(diǎn)(x0,
2024-12-05 06:45
【總結(jié)】實(shí)際問(wèn)題中導(dǎo)數(shù)的意義一、學(xué)習(xí)要求:導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用二、學(xué)習(xí)目標(biāo)能運(yùn)用導(dǎo)數(shù)方法求解有關(guān)利潤(rùn)最大,用料最省,效率最高等最優(yōu)化問(wèn)題,體會(huì)導(dǎo)數(shù)在解決實(shí)際生活問(wèn)題中的作用。三、重點(diǎn)難點(diǎn)用導(dǎo)數(shù)方法解決實(shí)際生活中的問(wèn)題四、要點(diǎn)梳理解應(yīng)用題的基本程序是:讀題建模求解
2025-11-10 23:16
【總結(jié)】一、復(fù)習(xí)幾何意義:曲線(xiàn)在某點(diǎn)處的切線(xiàn)的斜率;(瞬時(shí)速度或瞬時(shí)加速度)物理意義:物體在某一時(shí)刻的瞬時(shí)度。2、由定義求導(dǎo)數(shù)(三步法)步驟:);()()1(xfxxfy?????求增量;)()()2(xxfxxfxy???????算比值)(,0)3(xfxyx????
2025-11-08 15:21
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》復(fù)習(xí)2導(dǎo)學(xué)案蘇教版選修1-1復(fù)習(xí)要求:?jiǎn)握{(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;會(huì)求函數(shù)的單調(diào)區(qū)間.;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值;會(huì)求閉區(qū)間上函數(shù)的最大值、最小值.課前預(yù)習(xí):1.知識(shí)要點(diǎn)回顧:(1)函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系:(2)函
2024-12-04 23:46
【總結(jié)】拓展資料:導(dǎo)數(shù)在證明恒等式中的應(yīng)用一、預(yù)備知識(shí)定理1若函數(shù)f(x)在區(qū)間I上可導(dǎo),且x∈I,有f′(x)=0,則x∈I,有f(x)=c(常數(shù)).證明在區(qū)間I上取定一點(diǎn)x0及x∈I.顯然,函數(shù)f(x)在[x0,x]或[x,x0]上滿(mǎn)足拉格朗日定理,有f(x)-f(x0)=f′(ξ)(x