【總結】求曲線的方程2教學目標知識與技能1.更進一步熟練運用求曲線方程的方法、步驟,能熟練地根據(jù)條件求出簡單的曲線方程.過程與方法情感態(tài)度與價值觀教學重難點求曲線的方程或軌跡的常用方法:直接法、定義
2024-11-20 00:30
【總結】軌跡的“純粹性”與“完備性”“曲線的方程與方程的曲線”的定義包括兩個方面:一是曲線上點的坐標都是方程的解———稱為純粹性;二是以方程的解為坐標的點都在曲線上———稱為完備性.兩者缺一不可,否則就容易導致失誤.例1方程22(2)40xyxy?????的曲線是()A.兩個點B.一個圓
2024-11-20 00:26
【總結】雙曲線的性質(二)關于x軸、y軸、原點對稱圖形方程范圍對稱性頂點離心率yxOA2B2A1B1..F1F2yB2A1A2B1xO..F2F1)0(1????babyax2222bybaxa??????
2024-11-17 13:00
【總結】課題雙曲線的簡單性質學習目標:...,在自主探究合作交流中通過類比,分析雙曲線的幾何性質.學習重點:掌握雙曲線的簡單幾何性質學習難點:能區(qū)別橢圓與雙曲線的性質學習方法:以講學稿為依托的探究式教學方法。學習過程一、課前預習指導:1、雙曲線的性質:
2024-11-18 18:59
【總結】江蘇省漣水縣第一中學高中數(shù)學雙曲線的標準方程(2)教學案蘇教版選修1-1教學目標:使學生進一步了解雙曲線的定義,熟記雙曲線的標準方程教學重點:根據(jù)已知條件求雙曲線的標準方程.橢圓和雙曲線標準形式中a,b,c間的關系.教學難點:用雙曲線的標準方程處理簡單的實際問題.教學過程:一、復習提問1.雙曲線的標準方程:
2024-11-20 00:31
【總結】雙曲線的幾何性質一、基礎過關1.雙曲線2x2-y2=8的實軸長是________.2.雙曲線3x2-y2=3的漸近線方程是________________________________________.3.雙曲線x24-y212=1的焦點到漸近線的距離為________.4.雙曲線mx
2024-12-08 07:02
【總結】雙曲線的簡單幾何性質(一)復習回顧(1)雙曲線的標準方程.xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)探究一.)(幾何性質的,分析雙曲線0012222????babyax(1)范圍(2)對稱性x≥a,或x≤-a在標準方
2024-11-18 01:22
【總結】雙曲線的簡單幾何性質(二)取值范圍。的,求率為一象限的那條漸近線斜,設該雙曲線過第,的離心率,已知雙曲線kkebabyax]22[)00(2222?????的方程,求直線若兩點,于交的直線與斜率為雙曲線Lyx4|AB|.BAL212322???.22的取
2024-11-18 15:25
【總結】平面內(nèi)與兩個定點F1、F2的距離的差的絕對值等于常數(shù)(小于|F1F2|)的點的軌跡叫做雙曲線.這兩個定點叫做雙曲線的焦點,兩焦點的距離叫做雙曲線的焦距。:)22(,2||||||21caaMFMF???即).0,0(12222????babxay).0,0(12222????babyax:
2024-11-21 05:33
【總結】雙曲線的簡單性質課程目標學習脈絡1.掌握雙曲線的范圍、對稱性、頂點、漸近線及離心率等簡單幾何性質.2.感受雙曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,體會數(shù)形結合思想.雙曲線x2a2?y2b2=1(a0,b0)的簡單性質知識拓展(1
2024-11-16 23:22
【總結】第二章圓錐曲線與方程第8課時雙曲線的幾何性質(1)教學目標:1.熟練掌握雙曲線的范圍,對稱性,頂點等簡單幾何性質;2.掌握標準方程中cba,,的幾何意義,以及ecba,,,的相互關系;3.了解坐標法中根據(jù)曲線的方程研究曲線的幾何性質的一般方法.教學重點:雙曲線的幾何性質教學難點:
2024-11-19 17:31
【總結】,第二章圓錐曲線與方程,2.3雙曲線2.3.2雙曲線的簡單幾何性質,第一頁,編輯于星期六:點三十二分。,第二頁,編輯于星期六:點三十二分。,自,主,預,習,探,新,知,第三頁,編輯于星期六:點三十二分...
2024-10-22 18:45
【總結】-*-雙曲線的簡單性質首頁XINZHIDAOXUE新知導學ZHONGNANTANJIU重難探究DANGTANGJIANCE當堂檢測學習目標思維脈絡1.掌握雙曲線的范圍、對稱性、頂點、漸近線及離心率等簡單幾何性質.2.感受雙曲線在刻畫現(xiàn)實世界和解決實際問題中的作用,體會數(shù)形結合思想.
2024-11-16 23:24
【總結】橢圓圖圖象和定義課堂練習雙曲線的圖象和定義拋物線的圖象和定義橢圓的定義平面內(nèi)到兩定點F1,F(xiàn)2的距離之和為常數(shù)(大于F1F2距離)的點的軌跡叫橢圓,兩個定點叫橢圓的焦點,兩焦點的距離叫做橢圓的焦距雙曲線的定義平面內(nèi)到兩定點F1F2
2024-11-18 08:46
【總結】求曲線方程(1)曲線上點的坐標都是方程F(x,y)=0的解;(2)以方程F(x,y)=0的解為坐標的點都在曲線C上.曲線C叫做方程F(x,y)=0的曲線,方程F(x,y)=0叫做曲線C的方程.求曲線方程的步驟,設動點M(x,y);p的點M的集合P={M|p(M)};p