【總結】等比數(shù)列(第1課時)學習目標,理解等比數(shù)列的概念.,明確一個數(shù)列是等比數(shù)列的限定條件;能夠運用類比的思想方法得到等比數(shù)列的定義,會推導等比數(shù)列的通項公式.合作學習一、設計問題,創(chuàng)設情境:定義:通項公式:an=a1+(n-1)d,(n∈N*).前n項和公式:Sn==na1+d,(n∈
2024-12-08 07:03
【總結】本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理1本資料由書利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2復習回顧等比數(shù)列前n項和公式11nnaaqSq???1(1)1nnaqSq???公式的推證用的是錯位相減法當q=1時,1naSn?
2025-11-08 05:41
【總結】2.等比數(shù)列的前n項和學習目標預習導學典例精析欄目鏈接情景導入九章算術有一道“耗子穿墻”的問題:今有垣厚5尺,兩鼠相對,大鼠日一尺,小鼠亦一尺.大鼠日自倍,小鼠日自半,問幾何日相逢?各穿幾何?在實際上是一個等比數(shù)列求和的問題,他的解法也很
2025-11-08 23:16
【總結】高二物理第三周測練題班級_________姓名_________得分_________命題:寧文幫審題:吳良才一、單選擇題(本大題共7小題,每題8分,共56分)()1.某電場中的電場線(方向未標出)如圖所示,現(xiàn)將一帶負電的點電荷從A點移至B點需克服電場力做功
2024-11-24 12:05
【總結】一、選擇題(每題4分,共16分)1.(2020·遼寧高考)設Sn為等比數(shù)列{an}的前n項和,已知3S3=a4-2,3S2=a3-2,則公比q=()(A)3(B)4(C)5(D)6【解析】選,得3a3=a
2024-11-21 01:09
【總結】等比數(shù)列第1課時等比數(shù)列1.理解等比數(shù)列的概念,明確“同一個常數(shù)”的含義.2.掌握等比數(shù)列的通項公式及其應用.3.會判定等比數(shù)列,了解等比數(shù)列在實際中的應用.1231.等比數(shù)列文字語言一般地,如果一個數(shù)列從第2項起,每一項與它的前一項的比等于同一個常數(shù)
2025-11-08 17:05
【總結】第7課時等比數(shù)列的前n項和n項和公式的推導方法.n項和公式解決有關等比數(shù)列的問題..印度的舍罕王打算獎賞發(fā)明國際象棋的大臣西薩·班·達依爾,并問他想得到什么樣的獎賞.大臣說:“陛下,請您在這張棋盤的第一個小格內(nèi)賞給我一粒麥子,在第二個小格內(nèi)給兩粒,在第三個小格
2024-12-08 02:37
【總結】第7課時等比數(shù)列的前n項和n項和公式的推導方法.n項和公式解決有關等比數(shù)列的問題..印度的舍罕王打算獎賞發(fā)明國際象棋的大臣西薩?班?達依爾,并問他想得到什么樣的獎賞.大臣說:“陛下,請您在這張棋盤的第一個小格內(nèi)賞給我一粒麥子,在第二個小格內(nèi)給兩粒,在第三個小格內(nèi)給四粒,照這樣下去,每一小格內(nèi)都比前一小格
2025-11-08 19:03
【總結】知識回顧等比數(shù)列{an}的求和公式及推導方法。問題探究??也成等比數(shù)列。,,求證:,項和為的前:已知等比數(shù)列 探究142171471SSSSSSnann??等于多少?項的和,那么它前項的和等于,前項和等于:如果一個等比數(shù)列前 探究1550101052??證明。請間滿足怎樣的關系?并,,
2025-03-12 14:54
【總結】等差數(shù)列的前n項和第二課時2.等差數(shù)列的前n項和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項和為Sn,則該數(shù)列的通項公式為S1,n=1Sn-Sn-1,n≥2an=一、復習1(1)2nnnad???注:n項和的方法“倒序相加法”
2025-11-08 12:02
【總結】2.等比數(shù)列的前n項和1.(1)等比數(shù)列的前n項和公式:當q≠1時,Sn=a1(1-qn)1-q或Sn=a1-anq1-q,當q=1時,Sn=na1.(2)已知數(shù)列{an}是等比數(shù)列,a1=3,公比q=2,則其前6項和S6=189.(3)已知數(shù)列{an}是等比數(shù)列,a1=
2024-12-08 13:12
【總結】課題:等比數(shù)列的n項和概念班級:姓名:學號:第學習小組【學習目標】等比數(shù)列前n項和公式的推導過程,理解前n項和公式的含義,并會用公式進行有關計算【課前預習】1.推導公式:(1)研究633222221??????的計算;
2024-11-20 01:05
【總結】等比數(shù)列的前n項和第1課時一、新課導入:即,①,②②-①得即.由此對于一般的等比數(shù)列,其前項和,如何化簡?求數(shù)列:二.新課講解:Sn=a1+a1q+a1q2+…+a1qn-2+a1qn-1qSn=a1q+a1q
2025-10-07 20:25
【總結】等比數(shù)列的前n項和古印度國王舍罕王打算獎賞國際象棋的發(fā)明人——宰相西薩·班·達依爾。國王問他想要什么,發(fā)明者說:“請在第一個格子里放上1粒麥子,在第二個格子里放上2粒麥子,在第三個格子里放上4粒麥子,在第四個格子里放上8粒麥子,依此類推,每個格子里放的麥粒數(shù)都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子
2025-07-21 17:18
【總結】等比數(shù)列本節(jié)課為人教A版高中數(shù)學教材必修模塊五第二章第四節(jié)“等比數(shù)列”的第一課時.下面,我將從教材分析、學法分析、教法分析、教學過程、教學問題診斷、預期效果等六個方面對本課時的教學設計進行說明。一、教材分析教學內(nèi)容本課時的主要學習內(nèi)容是:理解等比數(shù)列的定義、等比數(shù)列的通項公式和等比中項,并能運用所學知識解決相關問題。教材特點