【總結(jié)】等差數(shù)列的前n項(xiàng)和2.等差數(shù)列的前n項(xiàng)和公式:1()2nnnaaS??1.若已知數(shù)列{an}前n項(xiàng)和為Sn,則該數(shù)列的通項(xiàng)公式為S1,n=1Sn-Sn-1,n≥2an=一、復(fù)習(xí)3.若數(shù)列{an}為等差數(shù)列:1(1)2nnnad???2,
2024-11-18 12:17
【總結(jié)】等差數(shù)列制作/講授:鄄城實(shí)驗(yàn)中學(xué)陳愛(ài)華高中數(shù)學(xué)一年級(jí)歡迎指導(dǎo)噢!教學(xué)目標(biāo)及重點(diǎn)難點(diǎn)教學(xué)目標(biāo)?,理解并掌握等差數(shù)列的通項(xiàng)公式,能運(yùn)用公式解決簡(jiǎn)單的問(wèn)題。?,進(jìn)一步提高學(xué)生的推理歸納能力。重點(diǎn)難點(diǎn)???“等差”特點(diǎn)的理解
2025-05-02 18:24
【總結(jié)】等差數(shù)列的前n項(xiàng)和理解教材新知突破??碱}型跨越高分障礙第二章題型一題型二應(yīng)用落實(shí)體驗(yàn)隨堂即時(shí)演練課時(shí)達(dá)標(biāo)檢測(cè)題型三知識(shí)點(diǎn)一知識(shí)點(diǎn)二題型四[導(dǎo)入新知]數(shù)列的前n項(xiàng)和對(duì)于數(shù)列{an},一般地稱
2024-11-17 17:05
【總結(jié)】(二)本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練(二)本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練(二)填一填·知識(shí)要點(diǎn)、記下疑難點(diǎn)本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練(二)填一填·知識(shí)要點(diǎn)、記下疑難點(diǎn)本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練(二)研一研·問(wèn)題探究、課堂更高效本課時(shí)欄目開(kāi)關(guān)填一填研一研練一練(
2025-08-05 10:29
【總結(jié)】西電附中:余禮寶知識(shí)回顧等差數(shù)列???????—通項(xiàng)—公差定義:AAAAAAAAAAAAA每一項(xiàng)與它前一項(xiàng)的差如果一個(gè)數(shù)列從第2項(xiàng)起,等于同一個(gè)常數(shù).......【說(shuō)明】AAA①數(shù)列{an}為等差數(shù)列?an+1-an=d或
2024-11-09 12:47
【總結(jié)】數(shù)學(xué)必修5等差數(shù)列練習(xí)題一、選擇題:(每題5分,共40分)1.記等差數(shù)列的前項(xiàng)和為,若,則該數(shù)列的公差()A、2B、3C、6D、72.已知是等差數(shù)列,,,則該數(shù)列前10項(xiàng)和等于()A.64 B.100 C.110 D.1203.若等差數(shù)列的前5項(xiàng)和,且,則()A.12 B
2025-04-04 04:28
【總結(jié)】等差數(shù)列(1)高一數(shù)學(xué)必修五第二章數(shù)列作業(yè)講評(píng):課本:P34B組1學(xué)海:P233,P24探究活動(dòng)復(fù)習(xí)鞏固?通項(xiàng)公式法、列表法、圖象法、遞推法.律,數(shù)列可分為哪些類型?有窮數(shù)列,無(wú)窮數(shù)列;遞增數(shù)列,遞減數(shù)列,擺動(dòng)數(shù)列,常數(shù)列.知識(shí)探究
2025-08-16 01:28
【總結(jié)】等差數(shù)列第二課時(shí):an-an-1=d(n≥2)或an+1-an=d(n∈N*)2.通項(xiàng)公式:an=a1+(n-1)d一、復(fù)習(xí){an}為等差數(shù)列?3.等差數(shù)列的性質(zhì)an+1-an=dan+1=an+d?1212()nnnaaa?????例{an}的通項(xiàng)公
2024-11-17 17:35
【總結(jié)】課題:等差數(shù)列的概念班級(jí):姓名:學(xué)號(hào):第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】1、掌握等差數(shù)列的概念;2、能夠利用等差數(shù)列的定義判斷給定數(shù)列是否為等差數(shù)列【課前預(yù)習(xí)】1、上節(jié)課我們學(xué)習(xí)了數(shù)列的定義及通項(xiàng)公式,那么什么叫數(shù)列?什么叫??na的通項(xiàng)公式)?2、①德國(guó)數(shù)
2024-12-05 10:14
【總結(jié)】第一篇:高二數(shù)學(xué)《等差數(shù)列》(2課時(shí))教案(新人教A版必修5) 課題:§ 授課類型:新授課 (第2課時(shí)) ●三維目標(biāo) 知識(shí)與技能:明確等差中項(xiàng)的概念;進(jìn)一步熟練掌握等差數(shù)列的通項(xiàng)公式及推導(dǎo)公...
2025-10-19 20:48
【總結(jié)】主講老師:數(shù)列、等差數(shù)列復(fù)習(xí)知識(shí)框架圖數(shù)列一般數(shù)列特殊函數(shù)——等差數(shù)列通項(xiàng)公式遞推公式圖象法定義等差中項(xiàng)通項(xiàng)公式前n項(xiàng)和公式性質(zhì)定義分類基本概念基本題型題型一:求數(shù)列通項(xiàng)公式的問(wèn)題例1.已知數(shù)列{an}的首項(xiàng)a1=1,其遞推
2024-11-09 08:45
【總結(jié)】§(一)本講欄目開(kāi)關(guān)填一填研一研練一練§(一)【學(xué)習(xí)目標(biāo)】1.理解等差數(shù)列的意義.2.會(huì)推導(dǎo)等差數(shù)列的通項(xiàng)公式,能運(yùn)用等差數(shù)列的通項(xiàng)公式解決一些簡(jiǎn)單的問(wèn)題.3.掌握等差中項(xiàng)的概念,深化認(rèn)識(shí)并能運(yùn)用.【學(xué)法指導(dǎo)】1.要善于通過(guò)實(shí)例的觀察、分析、歸納、提
2025-01-12 23:56
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十四分。,2.2等差數(shù)列第一課時(shí)等差數(shù)列的概念及通項(xiàng)公式,第二頁(yè),編輯于星期六:點(diǎn)三十四分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十四分。,第四頁(yè),編...
2025-10-13 18:52
【總結(jié)】高中數(shù)學(xué)必修5期末復(fù)習(xí)等差數(shù)列一、選擇題:1.三個(gè)數(shù),,abc既是等差數(shù)列,又是等比數(shù)列,則,,abc間的關(guān)系為()A.bacb???B.2bac?C.abc??D.0abc???2.下列關(guān)于星星的圖案構(gòu)成一個(gè)數(shù)列,該數(shù)列的一個(gè)通項(xiàng)公式是()
2024-11-30 07:49
【總結(jié)】第七章數(shù)列與數(shù)學(xué)歸納法等差數(shù)列等差數(shù)列問(wèn)題一數(shù)列{43}n?是等差數(shù)列嗎?{}anb?分析利用等差數(shù)列的定義:從第二項(xiàng)起,每一項(xiàng)與前一項(xiàng)的差都是同一個(gè)常數(shù)*,naanbnN???設(shè)1()[(1)]nnaaanbanb???????問(wèn)題二
2025-07-25 16:55