【總結(jié)】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個(gè)數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(gè)(1)數(shù)字1不排在個(gè)位和千位(2)數(shù)字1不在個(gè)位,數(shù)字6不在千位。分析:(1)個(gè)位和千位有5個(gè)數(shù)字可供選擇,其余2位有四個(gè)可供選擇,由乘法原理:=240
2025-03-25 02:36
【總結(jié)】排列組合排列定義???從n個(gè)不同的元素中,取r個(gè)不重復(fù)的元素,按次序排列,稱為從n個(gè)中取r個(gè)的無重排列。排列的全體組成的集合用P(n,r)表示。排列的個(gè)數(shù)用P(n,r)表示。當(dāng)r=n時(shí)稱為全排列。一般不說可重即無重??芍嘏帕械南鄳?yīng)記號(hào)為P(n,r),P(n,r)。組合定義從n個(gè)不同元素中取r個(gè)不重復(fù)的元素組成一個(gè)子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【總結(jié)】完美WORD格式專題三:排列、組合及二項(xiàng)式定理一、排列、組合與二項(xiàng)式定理【基礎(chǔ)知識(shí)】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56
【總結(jié)】主題課題:兩個(gè)原理和排列知識(shí)內(nèi)容:1、分類計(jì)數(shù)原理和分步計(jì)數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計(jì)算公式4.排列應(yīng)用題能力目標(biāo):1、通過兩個(gè)原理的學(xué)習(xí),培養(yǎng)學(xué)生的解決實(shí)際問題的能力;2、通過排列的學(xué)習(xí),可以遷移知識(shí),更好的運(yùn)用兩個(gè)原理,并能解決稍復(fù)雜的數(shù)學(xué)問題。3、培養(yǎng)學(xué)生的分析問題能力、解決問題的能力。數(shù)學(xué)思想:轉(zhuǎn)化思想
2025-04-17 01:31
【總結(jié)】排列、組合與概率的復(fù)習(xí)知識(shí)目標(biāo):1.排列組合問題的常見處理方法總結(jié)2.概率問題的常見處理方法總結(jié)能力要求:數(shù)學(xué)思想:逐步培養(yǎng)學(xué)生養(yǎng)成運(yùn)用分類與分步、對(duì)立事件等數(shù)學(xué)思想方法思考問題、解決問題的習(xí)慣通過常見問題處理方法的總結(jié),使學(xué)生能夠熟練處理排列、組合與概率的常規(guī)問題一、排列、組合常見問題的處理方法回顧:
2024-11-09 22:48
【總結(jié)】高考數(shù)學(xué)總復(fù)習(xí)------排列組合與概率統(tǒng)計(jì)【重點(diǎn)知識(shí)回顧】⑴分類計(jì)數(shù)原理與分步計(jì)數(shù)原理是關(guān)于計(jì)數(shù)的兩個(gè)基本原理,兩者的區(qū)別在于分步計(jì)數(shù)原理和分步有關(guān),分類計(jì)數(shù)原理與分類有關(guān).⑵排列與組合主要研究從一些不同元素中,任取部分或全部元素進(jìn)行排列或組合,,與順序有關(guān)的屬于排列問題,與順序無關(guān)的屬于組合問題.⑶排列與組合的主要公式①排列數(shù)公式:(m≤n) A
2025-08-05 18:20
【總結(jié)】排列組合常見題型及解題策略排列組合問題是高考的必考題,它聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,不易掌握,實(shí)踐證明,掌握題型和解題方法,識(shí)別模式,熟練運(yùn)用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略.一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利
2025-08-05 18:14
【總結(jié)】第1頁共25頁普通高中課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書—數(shù)學(xué)[人教版]高三新數(shù)學(xué)第一輪復(fù)習(xí)教案(講座39)—排列、組合、二項(xiàng)式定理一.課標(biāo)要求:1.分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理通過實(shí)例,總結(jié)出分類加法計(jì)數(shù)原理、分步乘法計(jì)數(shù)原理;能根據(jù)具體問題的特征,選擇分類加法計(jì)數(shù)原理或分步乘法計(jì)數(shù)原理解決一些簡(jiǎn)單的實(shí)際問題;
2025-07-24 14:36
【總結(jié)】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個(gè)數(shù)字.可組成多少個(gè)沒有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①?zèng)]有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個(gè)位數(shù)字只能是0...
2025-10-12 11:00
【總結(jié)】排列組合教材分析四色問題?任意一張地圖,用一種顏色對(duì)一個(gè)地區(qū)著色,那么一共只需要四種顏色就能保證每?jī)蓚€(gè)相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問題?如果一個(gè)村子里每一個(gè)女孩都恰好認(rèn)識(shí)k個(gè)男孩,并且每一個(gè)男孩也恰好認(rèn)識(shí)k個(gè)女孩,那么每一個(gè)女孩都可以嫁給她認(rèn)識(shí)的一個(gè)男孩,并且每一個(gè)男孩都可以娶一個(gè)他認(rèn)識(shí)的女孩.穩(wěn)定的婚姻問題?但是
2025-08-15 22:11
【總結(jié)】從n個(gè)不同元素中,任取m個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.:從n個(gè)不同元素中,任取m個(gè)元素,并成一組,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-05 11:20
【總結(jié)】排列組合方法一解決排列組合問題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2025-08-18 16:59
【總結(jié)】高中數(shù)學(xué)排列組合易錯(cuò)題分析排列組合問題類型繁多、方法豐富、富于變化,稍不注意,,以饗讀者.1沒有理解兩個(gè)基本原理出錯(cuò)排列組合問題基于兩個(gè)基本計(jì)數(shù)原理,即加法原理和乘法原理,故理解“分類用加、分步用乘”是解決排列組合問題的前提.例1(1995年上海高考題)從6臺(tái)原裝計(jì)算機(jī)和5臺(tái)組裝計(jì)算機(jī)中任意選取5臺(tái),其中至少有原裝與組裝計(jì)算機(jī)各兩臺(tái),則不同的取法有種.誤解:因?yàn)榭?/span>
【總結(jié)】解決排列組合中涂色問題的常見方法及策略與涂色問題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問題方法技巧性強(qiáng)且靈活多變,故這類問題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問題與觀察問題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問題的常見類型及求解方法。一、區(qū)域涂色問題1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①
2025-07-26 07:24
【總結(jié)】排列組合與概率原理內(nèi)容分析:排列組合與概率的兩個(gè)基本原理是排列、組合的開頭課,學(xué)習(xí)它所需的先行知識(shí)跟學(xué)生已熟知的數(shù)學(xué)知識(shí)聯(lián)系很少,排列、組合的計(jì)算公式都是以乘法原理為基礎(chǔ)的,而一些較復(fù)雜的排列、組合應(yīng)用題的求解,更是離不開兩個(gè)基本原理,所以在教學(xué)目標(biāo)中特別提出要使學(xué)生學(xué)會(huì)準(zhǔn)確地應(yīng)用兩個(gè)基本原理分析和解決一些簡(jiǎn)單的問題對(duì)于學(xué)生陌生的知識(shí),在開頭課中首先作一個(gè)大概的介紹,使學(xué)生有一個(gè)
2025-06-17 05:28