【總結(jié)】.公式P是指排列,從N個元素取R個進(jìn)行排列。公式C是指組合,從N個元素取R個,不進(jìn)行排列。N-元素的總個數(shù)R參與選擇的元素個數(shù)!-階乘,如????9?。?*8*7*6*5*4*3*2*1從N倒數(shù)r個,表達(dá)式應(yīng)該為n*(n-1)*(n-2)..(n-r+1);?????&
2025-07-26 05:35
【總結(jié)】排列組合綜合問題教學(xué)目標(biāo)通過教學(xué),學(xué)生在進(jìn)一步加深對排列、組合意義理解的基礎(chǔ)上,掌握有關(guān)排列、組合綜合題的基本解法,提高分析問題和解決問題的能力,學(xué)會分類討論的思想.教學(xué)重點與難點重點:排列、組合綜合題的解法.難點:正確的分類、分步.教學(xué)用具投影儀.教學(xué)過程設(shè)計(一)引入師:現(xiàn)在我們大家已經(jīng)學(xué)習(xí)和掌握了一些排列問題和組
2025-03-25 02:37
【總結(jié)】數(shù)學(xué)補差(4)———計數(shù)原理1.將個不同的小球放入個盒子中,則不同放法種數(shù)有A.B.C.D.2.個人排成一排,其中甲、乙兩人至少有一人在兩端的排法種數(shù)有A.B.C.D.3.共個人,從中選1名組長1名副組長,但不能當(dāng)副組長,不同的選法總數(shù)是A.B.C.D.4.現(xiàn)有男、女學(xué)生共人,從男生中選
2025-06-25 22:57
【總結(jié)】完美WORD格式《排列組合》一、排列與組合,有多少種不同選法?,1人下鄉(xiāng)演出,1人在本地演出,有多少種不同選派方法?3.現(xiàn)從男、女8名學(xué)生干部中選出2名男同學(xué)和1名女同學(xué)分別參加全?!百Y源”、“生態(tài)”和“環(huán)?!比齻€夏令營活動,已知共有90種不同的方案,那么男、女同
2025-08-05 07:32
【總結(jié)】排列組合常見題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個底數(shù),哪個是指數(shù)【例1】(1)有4名學(xué)生報名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報一科,有多少種不同的報名方法?(2)有4名學(xué)生參加爭奪數(shù)學(xué)、
2025-08-04 18:28
【總結(jié)】排列組合教材分析四色問題?任意一張地圖,用一種顏色對一個地區(qū)著色,那么一共只需要四種顏色就能保證每兩個相鄰的地區(qū)顏色不同。穩(wěn)定的婚姻問題?如果一個村子里每一個女孩都恰好認(rèn)識k個男孩,并且每一個男孩也恰好認(rèn)識k個女孩,那么每一個女孩都可以嫁給她認(rèn)識的一個男孩,并且每一個男孩都可以娶一個他認(rèn)識的女孩.穩(wěn)定的婚姻問題?但是
2025-08-15 22:11
【總結(jié)】排列組合復(fù)習(xí)課教學(xué)設(shè)計------龍巖二中郭小峰排列組合復(fù)習(xí)課一.教學(xué)內(nèi)容分析:、組合都是研究事物在某種給定的模式下所有可能的配置的數(shù)目問題,它們之間的主要區(qū)別在于是否要考慮選出元素的先后順序,不需要考慮順序的是組合問題,需要考慮順序的是排列問題,排列是在組合的基礎(chǔ)上對入選的元素進(jìn)行排隊,因此,分析解決排列組合問題的基本思維是“先組,后排”.,要注意四點:(1)
2025-05-01 04:21
【總結(jié)】從n個不同元素中,任取m個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列.:從n個不同元素中,任取m個元素,并成一組,叫做從n個不同元素中取出m個元素的一個組合.:::)!(!)1()2)(1(mnnmnnnnAmn????????排列與組合
2025-03-05 11:20
【總結(jié)】數(shù)學(xué)廣角排列組合嘉峪關(guān)市新城中心小學(xué):贠吉芳?一、教學(xué)內(nèi)容?課本第99頁知識?二、教學(xué)目標(biāo)?1、通過觀察、猜測、操作等活動吧,學(xué)會最簡單的排列和組合。?2、經(jīng)歷探索簡單事物的排列和組合規(guī)律的過程。?3、培養(yǎng)血紅色呢過有順序地全面地思考問題的意識。?4、感受數(shù)學(xué)與生活的緊密聯(lián)系,激發(fā)學(xué)生
2025-07-19 17:40
【總結(jié)】│排列、組合│知識梳理知識梳理1.排列(1)定義:從n個不同元素中任取m(m≤n)個元素,排成一列,叫做從n個不同元素中取出m個元素的一個排列.(2)排列數(shù)定義:從n個不同元素中取出m(m≤n)個元素的的個數(shù),叫做從
2025-08-05 07:24
【總結(jié)】排列組合復(fù)習(xí)學(xué)案1重復(fù)排列“求冪運算”重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù)。把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題。例18名同學(xué)爭奪3項冠軍,獲得冠軍的可能性有()2.特殊元素(位置)用優(yōu)先法:把有限制條件的元素(位置)稱為特殊元素(位置),可優(yōu)先將它(們)安排好,后再安排其它元素。
2025-04-17 01:31
【總結(jié)】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個數(shù)字組成無重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(1)數(shù)字1不排在個位和千位(2)數(shù)字1不在個位,數(shù)字6不在千位。分析:(1)個位和千位有5個數(shù)字可供選擇,其余2位有四個可供選擇,由乘法原理:=240
2025-03-25 02:36
【總結(jié)】高考數(shù)學(xué)總復(fù)習(xí)------排列組合與概率統(tǒng)計【重點知識回顧】⑴分類計數(shù)原理與分步計數(shù)原理是關(guān)于計數(shù)的兩個基本原理,兩者的區(qū)別在于分步計數(shù)原理和分步有關(guān),分類計數(shù)原理與分類有關(guān).⑵排列與組合主要研究從一些不同元素中,任取部分或全部元素進(jìn)行排列或組合,,與順序有關(guān)的屬于排列問題,與順序無關(guān)的屬于組合問題.⑶排列與組合的主要公式①排列數(shù)公式:(m≤n) A
2025-08-05 18:20
【總結(jié)】正難則反總體淘汰策略例0,1,2,3,4,5,6,7,8,9這十個數(shù)字中取出三個數(shù),使其和為不小于10的偶數(shù),不同的取法有多少種?解:這問題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個數(shù)字中有5個偶數(shù)5個奇數(shù),所取的三個數(shù)含有3個偶數(shù)的取法有____,只含有
2025-08-05 07:03
【總結(jié)】排列組合常見題型及解題策略排列組合問題是高考的必考題,它聯(lián)系實際生動有趣,但題型多樣,思路靈活,不易掌握,實踐證明,掌握題型和解題方法,識別模式,熟練運用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略.一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利
2025-08-05 18:14