【總結】解析幾何中的定值問題1、(2014安徽高考)如圖,已知兩條拋物線,過點的三條直線、和.與和分別交于兩點,與和分別交于,與和分別交于.記的面積分別為與,求證的值為定值.證明:設直線的方程分別為.把直線與拋物線聯(lián)立求解得:,,.由三角形三頂點坐標面積公式得:,,所以=為定值.注:(1)設?ABC三頂點的坐標分別為,則;(2)原解答包含
2025-08-05 16:44
【總結】直線與圓二、弦長公式:直線與二次曲線相交所得的弦長1直線具有斜率,直線與二次曲線的兩個交點坐標分別為,則它的弦長注:實質上是由兩點間距離公式推導出來的,只是用了交點坐標設而不求的技巧而已(因為,運用韋達定理來進行計算.2當直線斜率不存在是,則.三、過兩圓C1:x2+y2+D1x+E1y+F1=0和C2:x2+y2+D2x+E2y+F2=
2025-03-25 06:29
【總結】......圓錐曲線中的最值問題一、圓錐曲線定義、性質1.(文)已知F是橢圓+=1的一個焦點,AB為過其中心的一條弦,則△ABF的面積最大值為( )A.6B.15C.2
2025-03-25 00:03
【總結】2014年幾何圖形中的最值問題谷瑞林幾何圖形中的最值問題引言:最值問題可以分為最大值和最小值。在初中包含三個方面的問題::①二次函數(shù)有最大值和最小值;②一次函數(shù)中有取值范圍時有最大值和最小值。:①如x≤7,最大值是7;②如x≥5,最小值是5.:①兩點之間線段線段最短。②直線外一點向直線上任一點連線中垂線段最短,③在三角形中,兩邊之和大于第三邊,兩邊之差小于第三邊。一、
2025-03-24 12:12
【總結】直線中的最值問題基礎卷一.選擇題:1.設-π≤α≤π,點P(1,1)到直線xcosα+ysinα=2的最大距離是(A)2-(B)2+(C)2(D)2.點P為直線x-y+4=0上任意一點,O為原點,則|OP|的最小值為(A)(B)(C)2(D)23.已知兩點P(cosα,sinα),Q(cosβ,sinβ),則|PQ|的最大值
【總結】圓錐曲線中的最值問題復習1、橢圓及雙曲線第一定義;2、橢圓及雙曲線第二定義;3、拋物線定義例1、已知橢圓171622??yx及點M(1,3),F1、F2分別為橢圓的左、右焦點,A為橢圓上的任意一點,求:①∣AM│+∣AF2│
2025-08-16 02:08
2025-08-04 15:01
【總結】一動點到兩定點的距離最值熊明軍在學習三角形時,我們知道了三角形的三邊之間有一個不等關系:“三角形的兩邊之和大于第三邊”;“三角形的兩邊之差小于第三邊”。借助這個三角不等式,再結合典型例題,我們可以得到一個動點到兩個定點距離最值問題的研究方法與相關結論。一、典型例題的回顧【例題】已知有一段河岸相互平行的一條河,在河岸的一側有兩個村莊,如下圖?,F(xiàn)在政府為了讓兩個村莊用上自來水,決定出
2025-06-18 07:03
【總結】完美WORD格式職業(yè)教育定點定向助推精準扶貧研究目錄一、導論(一)概念界定1.職業(yè)教育2.定點定向助推精準扶貧(二)研究背景(三)研究意義(四)研究方法二、理論基礎(一)教育公平理論(二)人力資源理論(三)三、職業(yè)
2025-06-28 06:16
【總結】平面向量中的最值問題淺析耿素蘭山西平定二中(045200)平面向量中的最值問題多以考查向量的基本概念、基本運算和性質為主,解決此類問題要注意正確運用相關知識,合理轉化。一、利用函數(shù)思想方法求解例1、給定兩個長度為1的平面向量和,,,則的最大值是________.圖11分析:尋求刻畫點變化的變量,建立目標與此變量的函數(shù)關系是解決最值問題的常用途徑。解
2025-03-25 01:21
【總結】解析幾何中的幾類定值問題浙江省諸暨中學邵躍才311800求定值是解析幾何中頗有難度的一類問題,由于它在解題之前不知道定值的結果,因而更增添了題目的神秘色彩。解決這類問題時,要善于運用辯證的觀點去思考分析,在動點的“變”中尋求定值的“不變”性,用特殊探索法(特殊值、特殊位置、特殊圖形等)先確定出定值,揭開神秘的面紗,這樣可將盲目的探索問題轉化為有方向有目標的一般性證明題,從而找到解
2025-09-25 17:25
【總結】中考數(shù)學幾何最值問題解法在平面幾何的動態(tài)問題中,當某幾何元素在給定條件變動時,求某幾何量(如線段的長度、圖形的周長或面積、角的度數(shù)以及它們的和與差)的最大值或最小值問題,稱為最值問題。解決平面幾何最值問題的常用的方法有:(1)應用兩點間線段最短的公理(含應用三角形的三邊關系)求最值;(2)應用垂線段最短的性質求最值;(3)應用軸對稱的性質求最值;(4)應用二次函數(shù)求最值;(5)應用其它知
2025-04-04 03:00
【總結】1幾何中的最值問題(作業(yè))1.如圖,在梯形ABCD中,AB∥CD,∠BAD=90°,AB=6,對角線AC平分∠BAD,點E在AB上,且AE=2(AE<AD),點P是AC上的動點,則PE+PB的最小值是__________.PEDCBACDQPBA
2025-08-01 20:49
2025-08-16 00:56
【總結】并購(MA)交易中估值問題的研究屈文洲博士/副教授美國特許金融分析師(CFA)中國注冊會計師(CPA)2/28/20231并購交易中估值問題的研究學習的內(nèi)容2/28/20232并購交易中估值問題的研究典型的并購問題并購交易的問題交易形式?出售/收購公司的股份?少數(shù)股權投資
2025-03-10 13:37