【總結(jié)】“動能定理”的典型例題?【例1】質(zhì)量為m=2kg的物體,在水平面上以v1=6m/s的速度勻速向西運(yùn)動,若有一個(gè)F=8N、方向向北的恒定力作用于物體,在t=2s內(nèi)物體的動能增加了[]A.28JB.64JC.32JD.36JE.100J【分析】物體原來在平衡力作用下西行,受向北的恒力F作用后將做類似于平拋的曲線運(yùn)動(見圖).物體在向北方向上的加速度
2025-03-27 01:32
【總結(jié)】三垂線定理aAPoα復(fù)習(xí)提問:1。直線與平面垂直的定義。2。直線與平面垂直的判定定理。3。證明線面垂直的方法。4。證明線線垂直的方法。一、射影的概念定義:自一點(diǎn)P向平面α引垂線,垂足P1叫做P在平面α內(nèi)的正射影(簡稱射影)。.Pα1p如果圖形F上的所有點(diǎn)
2025-05-10 23:16
【總結(jié)】二項(xiàng)式定理典型例題--典型例題一例1在二項(xiàng)式的展開式中,前三項(xiàng)的系數(shù)成等差數(shù)列,求展開式中所有有理項(xiàng).分析:本題是典型的特定項(xiàng)問題,涉及到前三項(xiàng)的系數(shù)及有理項(xiàng),可以通過抓通項(xiàng)公式解決.解:二項(xiàng)式的展開式的通項(xiàng)公式為:前三項(xiàng)的得系數(shù)為:,由已知:,∴通項(xiàng)公式為為有理項(xiàng),故是4的倍數(shù),∴依次得到有理項(xiàng)為.說明:本題通過抓特定項(xiàng)滿足的條件
2025-03-24 06:31
【總結(jié)】培優(yōu)輔導(dǎo),陪你更優(yōu)秀!垂徑定理練習(xí)題典型例題分析:例題、垂徑定理1、在直徑為52cm的圓柱形油槽內(nèi)裝入一些油后,截面如圖所示,如果油的最大深度為16cm,那么油面寬度AB是________cm.2、在直徑為52cm的圓柱形油槽內(nèi)裝入一些油后,,如果油面寬度是48cm,那么油的最大深度為________cm.3、如圖,已知在⊙中,弦,且
2025-03-25 00:08
【總結(jié)】《勾股定理》典型例題折疊問題1、如圖,有一張直角三角形紙片,兩直角邊AC=6,BC=8,將△ABC折疊,使點(diǎn)B與點(diǎn)A重合,折痕為DE,則CD等于()A.B.C.D.
2025-03-24 13:01
【總結(jié)】此資料由網(wǎng)絡(luò)收集而來,如有侵權(quán)請告知上傳者立即刪除。資料共分享,我們負(fù)責(zé)傳遞知識。 疊加原理和戴維南定理實(shí)驗(yàn)報(bào)告 篇一:實(shí)驗(yàn)報(bào)告1:疊加原理和戴維南定理的驗(yàn)證 實(shí)驗(yàn)報(bào)告疊加原理和戴維南定理的驗(yàn)證姓...
2025-01-11 23:15
【總結(jié)】勾股定理經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過程中,一定要先寫上在哪個(gè)直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2025-06-23 07:40
【總結(jié)】11頁共11頁勾股定理經(jīng)典例題詳解熟悉下列勾股數(shù),對解題是會有幫助的: ①3、4、5②5、12、13;③8、15、17;④7、24、25;⑤10、24、26;⑥9、40、41.類型二:勾股定理的構(gòu)造應(yīng)用1、如圖,已知:在中,,,.求:BC的長. ,已知:,,于P.求證:.:如圖,∠B=∠D=90°,∠A=60
2025-03-24 13:00
【總結(jié)】經(jīng)典例題透析類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的過程中,一定要先寫上在哪個(gè)直角三角形中,注意勾股定理的變形使用。解析:(1)在△ABC中,∠C=90°,a=6,c=10,b=
2025-06-23 07:39
【總結(jié)】勾股定理復(fù)習(xí)一、知識要點(diǎn):1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。勾股定理在西方叫畢達(dá)哥拉斯定理,也叫百牛定理。它是直角三角形的一條重要性質(zhì),揭示的是三邊之間的數(shù)量關(guān)系。它的主要作用是已知直角三角形的兩邊求第三邊
2025-06-22 04:05
【總結(jié)】折疊問題與勾股定理例題總結(jié)1.如圖,在矩形ABCD中,AB=6,BC=8。將矩形ABCD沿CE折疊后,使點(diǎn)D恰好落在對角線AC上的點(diǎn)F處。(1)求EF的長;(2)求梯形ABCE的面積。2.如圖所示,在?ABC中,AB=20,AC=12,BC=16,把?ABC折疊,使AB落在直線AC上,求重疊部分(陰影部分)的面積.3
2025-03-25 02:27
【總結(jié)】類型一:勾股定理的直接用法1、在Rt△ABC中,∠C=90°(1)已知a=6,c=10,求b,(2)已知a=40,b=9,求c;(3)已知c=25,b=15,求a.思路點(diǎn)撥:寫解的
【總結(jié)】勾股定理典型例題及專項(xiàng)訓(xùn)練新宇中學(xué)八年級數(shù)學(xué)?1.如圖,公園內(nèi)有一塊長方形花圃,有極少數(shù)人為了避開拐角走“捷徑”,在花圃內(nèi)走出了一條“路”.他們僅僅少走了步路(假設(shè)3步為1米),卻踩傷了花草.超越自我
2025-05-06 12:12
【總結(jié)】動量、沖量、動量定理要點(diǎn)·疑點(diǎn)·考點(diǎn)課前熱身能力·思維·方法延伸·拓展要點(diǎn)·疑點(diǎn)·考點(diǎn)一、動量(p):p=mv有大小和方向,是矢量.單位:kg·m·s-1.:描述物體機(jī)械運(yùn)動狀態(tài)的物理量.:運(yùn)算應(yīng)用
2024-11-06 14:38
【總結(jié)】正弦定理教學(xué)重點(diǎn):正弦定理教學(xué)難點(diǎn):正弦定理的正確理解和熟練運(yùn)用,邊角轉(zhuǎn)化。多解問題:在任一個(gè)三角形中,各邊和它所對角的正弦比相等,即 ==2.三角形面積公式在任意斜△ABC當(dāng)中S△ABC=:===2R(R為△ABC外接圓半徑)1)已知兩角和任意一邊,求其它兩邊和一角;2)已知兩邊和其中一邊對角,求另一邊的對角,進(jìn)而可求其它的邊和角。3)
2025-06-28 04:45