【總結(jié)】勾股定理的逆定理一、說教材(一)教材分析本節(jié)內(nèi)容選自《人教版》義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書數(shù)學(xué)八年級下冊第十八章《勾股定理》中的第二節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它是前面知識的繼續(xù)和深化,勾股定理的逆定理是初中幾何學(xué)習(xí)中的重要內(nèi)容之一,是今后判斷某三角形是直角三角形的重要方法之一,在以后的解題中,將有十分廣泛的應(yīng)用,同時在應(yīng)用中滲透了利用代數(shù)計(jì)算
2025-05-12 05:16
【總結(jié)】勾股定理的逆定理說課稿 勾股定理的逆定理說課稿1各位考官,大家好,我是X號考生,今天我說課的內(nèi)容是《勾股定理的逆定理》。根據(jù)新課程標(biāo)準(zhǔn),我將以教什么,怎么教,為什么這么教為思路開展我的說課,首先...
2024-12-06 22:46
【總結(jié)】勾股定理及其逆定理一、知識點(diǎn)1、勾股定理:直角三角形兩直角邊a、b的平方和等于斜邊c的平方。(即:a2+b2=c2)2、勾股定理的逆定理:如果三角形的三邊長:a、b、c有關(guān)系a2+b2=c2,那么這個三角形是直角三角形。3、滿足的三個正整數(shù),稱為勾股數(shù)。二、典型題型1、求線段的長度題型2、判斷直角三角形題型3、求最短距離三、主要數(shù)學(xué)思想和方法(1
2025-06-22 04:05
【總結(jié)】,,,,,,,,,,,,,第一頁,共四十九頁。,破譯生命密碼,成就(chéngjiù)美麗人生,BORNTOLEARNAguidetounderstandingourselvesandeachothe...
2024-11-15 13:21
【總結(jié)】........第3章勾股定理綜合提優(yōu)一、填空題1.如圖,在一次暴風(fēng)災(zāi)害中,一棵大樹在離地面3米處折斷,樹的頂端落在離樹桿底4米處,那么這棵樹折斷之前的高度是_______米. 2.直角三角形一條直角邊與斜邊分別為4cm和5cm,則斜邊上的
2025-03-25 07:33
【總結(jié)】勾股定理的逆定理第十七章勾股定理第1課時一、情境引入?據(jù)說,幾千年前的古埃及人就已經(jīng)知道,在一根繩子上連續(xù)打上等距離的13個結(jié),然后,用釘子將第1個與第13個結(jié)釘在一起,拉緊繩子,再在第4個和第8個結(jié)處各釘上一個釘子,如圖。這樣圍成的三角形中,最長邊所對的角就是直角。知道為什么嗎?也就意味著,如果圍成三
2024-12-07 17:29
【總結(jié)】勾股定理的逆定理人教版數(shù)學(xué)八年級下冊.重點(diǎn)、互逆定理難點(diǎn)3.能靈活運(yùn)用勾股定理的逆定理解決實(shí)際問題.重點(diǎn)學(xué)習(xí)目標(biāo)(1)在Rt△ABC,∠C=90°,a=8,b=15,則c=.(2)在Rt△ABC,∠B=90
2025-07-18 12:59
【總結(jié)】第一篇:勾股定理逆定理說課稿 勾股定理的逆定理說課稿 一、教材分析 (一)、本節(jié)課在教材中的地位作用 “勾股定理的逆定理”一節(jié),是在上節(jié)“勾股定理”之后,繼續(xù)學(xué)習(xí)的一個直角三角形的判斷定理,它...
2024-11-04 17:50
【總結(jié)】勾股定理單元復(fù)習(xí)一、知識要點(diǎn):1、勾股定理勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方。也就是說:如果直角三角形的兩直角邊為a、b,斜邊為c,那么a2+b2=c2。公式的變形:a2=c2-b2,b2=c2-a2。2、勾股定理的逆定理如果三角形ABC的三邊長分別是a,b,c,且滿足a2+b2=c2,那么三角形ABC是直角三角形。這個定理叫
2025-04-16 23:53
【總結(jié)】宜昌市邁克學(xué)習(xí)能力培訓(xùn)學(xué)校業(yè)精于勤荒于嬉勾股定理知識點(diǎn)匯總1、基礎(chǔ)知識點(diǎn):1.勾股定理:直角三角形兩直角邊的平方和等于斜邊的平方;表示方法:如果直角三角形的兩直角邊分別為,,斜邊為,那么 勾股定理的證明方法很多,常見的是拼圖的方法 用拼圖的方法驗(yàn)證勾股定理的思路是①圖形進(jìn)過割補(bǔ)拼接后,
【總結(jié)】勾股定理1:勾股定理2、勾股逆定理3:勾股定理的證明 勾股定理的證明方法很多,常見的是拼圖的方法,用拼圖的方法驗(yàn)證勾股定理的思路是①圖形經(jīng)過割補(bǔ)拼接后,只要沒有重疊,沒有空隙,面積不會改變②根據(jù)同一種圖形的面積不同的表示方法,列出等式,推導(dǎo)出勾股定理常見方法如下:方法一:,,化簡可證.方法二:四個直角三角形的面積與小正方形面積的和等于大正方形的面積
2025-03-24 13:01
【總結(jié)】勾股定理年級:初二科目:數(shù)學(xué)時間:9/21/202118:43:57用四個全等直角三角形拼成的是三國時期數(shù)學(xué)家趙爽驗(yàn)證勾股定理時所用的"眩圖',你能用它驗(yàn)證C2=A2+B2嗎?把你的驗(yàn)證過程寫出來.勾股定理的證明,自古以來引起人們的極大興趣,其證法至今已約有四百種之多,是幾何定理中證法最多的一個。若將這些證法搜集
2024-12-08 05:40
【總結(jié)】趣話勾股定理1955年希臘發(fā)行了一張郵票,圖案是由三個棋盤排列而成.這張郵票是紀(jì)念二千五百年前希臘的一個學(xué)派和宗教團(tuán)體——畢達(dá)哥拉斯學(xué)派,它的成立以及在文化上的貢獻(xiàn).郵票上的圖案是對數(shù)學(xué)上一個非常重要定理的說明,它是初等幾何中最精彩的,也是最著名和最有用的定理.在我國,人們稱它為勾股定理或商高定理;在歐洲,人們稱它為畢達(dá)哥拉斯定理.勾股定理
2024-12-07 21:44
【總結(jié)】初中數(shù)學(xué)優(yōu)秀說課稿模板《研究勾股定理》一、教材分析(一)教材所處的地位這節(jié)課是九年制義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書八年級第一章第一節(jié)探索勾股定理第一課時,勾股定理是幾何中幾個重要定理之一,它揭示的是直角三角形中三邊的數(shù)量關(guān)系。它在數(shù)學(xué)的發(fā)展中起過重要的作用,在現(xiàn)時世界中也有著廣泛的作用。學(xué)生通過對勾股定理的學(xué)習(xí),可以在原有的基礎(chǔ)上對直角三角形有進(jìn)一步的認(rèn)識和理
2025-08-14 12:47
【總結(jié)】勾股定理一、選擇題1、直角三角形的兩直角邊分別為5厘米、12厘米,則斜邊上的高是()A、6厘米B、8厘米C、厘米D、厘米2、若等腰三角形腰長為10cm,底邊長為16cm,那么它的面積為()A.48cm2B.36cm2C.24cm2