【總結(jié)】12除做到:排列組合分清,加乘原理辯明,避免重復(fù)遺漏外,還應(yīng)注意積累排列組合問(wèn)題得以快速準(zhǔn)確求解。直接法特殊元素法例1用1,2,3,4,5,6這6個(gè)數(shù)字組成無(wú)重復(fù)的四位數(shù),試求滿足下列條件的四位數(shù)各有多少個(gè)(1)數(shù)字1不排在個(gè)位和千位(2)數(shù)字1不在個(gè)位,數(shù)字6不在千位。分析:(1)個(gè)位和千位有5個(gè)數(shù)字可供選擇,其余2位有四個(gè)可供選擇,由乘法原理:=240
2025-03-25 02:36
【總結(jié)】正難則反總體淘汰策略例0,1,2,3,4,5,6,7,8,9這十個(gè)數(shù)字中取出三個(gè)數(shù),使其和為不小于10的偶數(shù),不同的取法有多少種?解:這問(wèn)題中如果直接求不小于10的偶數(shù)很困難,可用總體淘汰法。這十個(gè)數(shù)字中有5個(gè)偶數(shù)5個(gè)奇數(shù),所取的三個(gè)數(shù)含有3個(gè)偶數(shù)的取法有____,只含有
2025-08-05 07:03
【總結(jié)】1.從1,3,5中選2個(gè)不同數(shù)字,從2,4,6,8中選3個(gè)不同數(shù)字排成一個(gè)五位數(shù),則這些五位數(shù)中偶數(shù)的個(gè)數(shù)為()A.5040B.1440C.864D.7202.五個(gè)同學(xué)排成一排照相,其中甲、乙兩人不排兩端,則不同的排法種數(shù)為()A.33B.36C.40D.483.某校從8名教師中選派4名同時(shí)去4個(gè)邊遠(yuǎn)地區(qū)支教(每地1
2025-08-05 18:10
【總結(jié)】名稱內(nèi)容分類原理分步原理定義相同點(diǎn)不同點(diǎn)兩個(gè)原理的區(qū)別與聯(lián)系:做一件事或完成一項(xiàng)工作的方法數(shù)直接(分類)完成間接(分步驟)完成做一件事,完成它可以有n類辦法,第一類辦法中有m1種不同的方法,第二類辦法中有m2種不同的方法…,第n類
2025-03-05 11:20
【總結(jié)】排列組合排列定義???從n個(gè)不同的元素中,取r個(gè)不重復(fù)的元素,按次序排列,稱為從n個(gè)中取r個(gè)的無(wú)重排列。排列的全體組成的集合用P(n,r)表示。排列的個(gè)數(shù)用P(n,r)表示。當(dāng)r=n時(shí)稱為全排列。一般不說(shuō)可重即無(wú)重??芍嘏帕械南鄳?yīng)記號(hào)為P(n,r),P(n,r)。組合定義從n個(gè)不同元素中取r個(gè)不重復(fù)的元素組成一個(gè)子集,而不考慮其元素的順序,稱
2025-06-25 23:09
【總結(jié)】完美WORD格式專題三:排列、組合及二項(xiàng)式定理一、排列、組合與二項(xiàng)式定理【基礎(chǔ)知識(shí)】(加法原理).(乘法原理).==.(n,m∈N*,且m≤n).===(n,m∈N*,且m≤n).:(1)=;(2)+=(3).:.:
2025-06-25 22:56
【總結(jié)】主題課題:兩個(gè)原理和排列知識(shí)內(nèi)容:1、分類計(jì)數(shù)原理和分步計(jì)數(shù)原理2、排列、排列數(shù)概念3、排列數(shù)的計(jì)算公式4.排列應(yīng)用題能力目標(biāo):1、通過(guò)兩個(gè)原理的學(xué)習(xí),培養(yǎng)學(xué)生的解決實(shí)際問(wèn)題的能力;2、通過(guò)排列的學(xué)習(xí),可以遷移知識(shí),更好的運(yùn)用兩個(gè)原理,并能解決稍復(fù)雜的數(shù)學(xué)問(wèn)題。3、培養(yǎng)學(xué)生的分析問(wèn)題能力、解決問(wèn)題的能力。數(shù)學(xué)思想:轉(zhuǎn)化思想
2025-04-17 01:31
【總結(jié)】基本知識(shí)排列與元素的順序有關(guān),組合與順序無(wú)關(guān).如231與213是兩個(gè)排列,2+3+1的和與2+1+3的和是一個(gè)組合.(一)兩個(gè)基本原理是排列和組合的基礎(chǔ)(1)加法原理:做一件事,完成它可以有n類辦法,在第一類辦法中有m1種不同的方法,在第二類辦法中有m2種不同的方法,……,在第n類辦法中有mn種不同的方法,那么完成這件事共有N=m1+m2+m3+…+mn種不同方法.(2)乘
2025-08-05 08:17
【總結(jié)】例解排列組合中涂色問(wèn)題于涂色問(wèn)題有關(guān)的試題新穎有趣,其中包含著豐富的數(shù)學(xué)思想。解決涂色問(wèn)題方法技巧性強(qiáng)且靈活多變,故這類問(wèn)題的利于培養(yǎng)學(xué)生的創(chuàng)新思維能力、分析問(wèn)題與觀察問(wèn)題的能力,有利于開發(fā)學(xué)生的智力。本文擬總結(jié)涂色問(wèn)題的常見(jiàn)類型及求解方法。一、區(qū)域涂色問(wèn)題1、根據(jù)分步計(jì)數(shù)原理,對(duì)各個(gè)區(qū)域分步涂色,這是處理染色問(wèn)題的基本方法。例1、用5種不同的顏色給圖中標(biāo)①、②、③、④
【總結(jié)】排列組合應(yīng)用題的解題技巧教學(xué)目的教學(xué)過(guò)程課堂練習(xí)課堂小結(jié)方法;用題的解題技巧;列組合問(wèn)題.一復(fù)習(xí)引入二新課講授排列組合問(wèn)題在實(shí)際應(yīng)用中是非常廣泛的,并且在實(shí)際中的解題方法也是比較復(fù)雜的,下面就通過(guò)一些實(shí)例來(lái)總結(jié)實(shí)際應(yīng)用中的解題技巧.例題1
2024-11-09 13:22
【總結(jié)】排列組合21種模型:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.,如果必須相鄰且在的右邊,那么不同的排法種數(shù)有A、60種B、48種C、36種D、24種解析:把視為一人,且固定在的右邊,則本題相當(dāng)于4人的全排列,種,答案:.:元素相離(即不相鄰)問(wèn)題,可先把無(wú)位置要求的幾個(gè)元素全排列,再把規(guī)定的相離的幾個(gè)元素插入上述幾個(gè)元素的
2025-07-26 07:25
【總結(jié)】排列組合加乘原理:排列組合
2025-03-24 03:20
【總結(jié)】排列組合測(cè)試卷1.7個(gè)人站一隊(duì),其中甲在排頭,乙不在排尾,則不同的排列方法有()A.720 B.600 C.576 D.3242.某學(xué)校推薦甲、乙、丙、丁4名同學(xué)參加A、B、C三所大學(xué)的自主招生考試。每名同學(xué)只推薦一所大學(xué),()3.6個(gè)人分乘兩輛不
2025-08-05 07:38
【總結(jié)】例1)...1)(1)(...1()(425xxxxxxxg?????????解其中展開式的一般項(xiàng)為,321nrrrxxxx?40,20,50,321321?????????rrrnrrr是什么數(shù)列的生成函數(shù)?.數(shù)解的個(gè)數(shù)恰為上述方程的非負(fù)整的系數(shù)nnhx的生成函數(shù)。的個(gè)數(shù)上述方程的非負(fù)整數(shù)解是所以,nhx
2025-05-12 17:10
【總結(jié)】排列組合方法一解決排列組合問(wèn)題的幾種思想1.主元思想某單位安排7位工作人員在10月1日至10月7日值班,每人值班1天,其中甲乙2人都不安排在10月1日和10月7日,則不同安排方法有多少種?解析先排甲乙,有5×4=20種再排其他5人,有5×4×3×2×1=120種共120
2025-08-18 16:59