【總結(jié)】2022年2月5日星期六1)理解函數(shù)的奇偶性含義,能利用定義判斷一些簡單函數(shù)的奇偶性;2)能利用函數(shù)周期性定義作出判斷及求一些常見簡單函數(shù)的最小正周期;__________________0)()(),0(,)()08.(1取值范圍為的則滿足時(shí),有當(dāng)上奇函數(shù)是定義在實(shí)數(shù)集已知函數(shù)上海改編x
2025-01-08 13:40
【總結(jié)】高中數(shù)學(xué)必修1對(duì)數(shù)函數(shù)(3)單調(diào)性與奇偶性新課、復(fù)合函數(shù)單調(diào)性問題1)(xf)(xg)]([)]([xfgxgf或求下列函數(shù)的單調(diào)區(qū)間)1(2log)1(??xy)1(21log)2(??xy)23(22log)3(???xxy)32(212lo
2025-05-15 02:15
【總結(jié)】 奇偶性與單調(diào)性及典型例題 函數(shù)的單調(diào)性、奇偶性是高考的重點(diǎn)內(nèi)容之一,、單調(diào)性的定義,掌握判定方法,正確認(rèn)識(shí)單調(diào)函數(shù)與奇偶函數(shù)的圖象. 難點(diǎn)磁場(chǎng) (★★★★)設(shè)a0,f(x)=是R上的偶函數(shù),(1)求a的值;(2)證明:f(x)在(0,+∞)上是增函數(shù). 案例探究 [例1]已知函數(shù)f(x)在(-1,1)上有定義,f()=-1,當(dāng)且僅當(dāng)0
2025-03-25 00:27
【總結(jié)】......抽象函數(shù)的對(duì)稱性、奇偶性與周期性常用結(jié)論:抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,只給出一些函數(shù)符號(hào)及其滿足的條件的函數(shù),如函數(shù)的定義域,解析遞推式,特定點(diǎn)的函數(shù)值
2025-06-24 16:27
【總結(jié)】......抽象函數(shù)的對(duì)稱性、奇偶性與周期性總結(jié)及習(xí)題:抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,只給出一些函數(shù)符號(hào)及其滿足的條件的函數(shù),如函數(shù)的定義域,解析遞推式,
2025-03-26 00:35
【總結(jié)】(一)函數(shù)的單調(diào)性知識(shí)梳理1.函數(shù)單調(diào)性定義:對(duì)于給定區(qū)間D上的函數(shù)f(x),若對(duì)于任意x,x∈D,當(dāng)xf(x),則稱f(x)是區(qū)間D上的減函數(shù),D叫f(x)單調(diào)遞減區(qū)間.2.函數(shù)單調(diào)性的判斷方法:(1)從直觀上看,函數(shù)圖象
2025-06-23 20:11
【總結(jié)】函數(shù)單調(diào)性和奇偶性一、選擇題(每小題5分,一共12道小題,總分60分)1.命題“若都是偶數(shù),則也是偶數(shù)”的逆否命題是()A.若不是偶數(shù),則與都不是偶數(shù)B.若是偶數(shù),則與不都是偶數(shù)C.若是偶數(shù),則與都不是偶數(shù)D.若不是偶數(shù),則與不都是偶數(shù)2.下列函數(shù)是偶函數(shù)的是()A.B.C.D.3.下列函數(shù)中,在其定
2025-03-24 12:16
【總結(jié)】(一)課型:新授課教學(xué)目標(biāo):(1)知識(shí)與能力:理解增函數(shù)、減函數(shù)、單調(diào)區(qū)間、單調(diào)性等概念,掌握增(減)函數(shù)的證明和判別,學(xué)會(huì)運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。(2)過程與方法:引導(dǎo)學(xué)生通過觀察,歸納,抽象,概括自主構(gòu)建單調(diào)性的概念,使學(xué)生領(lǐng)會(huì)數(shù)形結(jié)合的思想方法。(3)情感,態(tài)度,價(jià)值觀:培養(yǎng)學(xué)生主動(dòng)探索,敢于創(chuàng)新的意識(shí)和精神,使學(xué)生理性思考生活中的增長和遞減的現(xiàn)象。
2025-07-25 05:18
【總結(jié)】函數(shù)單調(diào)性與奇偶性經(jīng)典例題透析(一)講課人:張海青授課時(shí)間:2014年9月23日授課地點(diǎn):教學(xué)樓二樓多媒體(二)授課對(duì)象:高三文科優(yōu)生授課過程:類型一、函數(shù)的單調(diào)性的證明 1.證明函數(shù)上的單調(diào)性. 證明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x10 則 ∵x10,x20,∴
2025-01-15 01:19
【總結(jié)】函數(shù)的奇偶性與單調(diào)性(首先定義域必須關(guān)于原點(diǎn)對(duì)稱)(1)為奇函數(shù);為偶函數(shù);(2)奇函數(shù)在原點(diǎn)有定義(3)任一個(gè)定義域關(guān)于原點(diǎn)對(duì)稱的函數(shù)一定可以表示成一個(gè)奇函數(shù)和一個(gè)偶函數(shù)之和???即(奇)(偶).?(注:①先確定定義域;②單調(diào)性證明一定要用定義)?(1)定義:區(qū)間上任意兩個(gè)值,若時(shí)有,稱為上增函數(shù),若時(shí)有,稱為上
2025-05-16 01:41
【總結(jié)】典型例題函數(shù)的單調(diào)性和奇偶性例1?(1)畫出函數(shù)y=-x2+2|x|+3的圖像,并指出函數(shù)的單調(diào)區(qū)間.解:函數(shù)圖像如下圖所示,當(dāng)x≥0時(shí),y=-x2+2x+3=-(x-1)2+4;當(dāng)x<0時(shí),y=-x2-2x+3=-(x+1)2+4.在(-∞,-1]和[0,1]上,函數(shù)是增函數(shù):在[-1,0]和[1,+∞)上,函數(shù)是減函數(shù).評(píng)析?函數(shù)單調(diào)性是對(duì)某個(gè)
2025-03-24 12:17
【總結(jié)】增函數(shù),減函數(shù)的定義:設(shè)函數(shù)f(x)的定義域?yàn)镮如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x,x,當(dāng)xx時(shí),都有f(x)f(x),那么就說f(x)在這個(gè)區(qū)間上是增函數(shù).111222如果對(duì)于屬于定義域I內(nèi)某個(gè)區(qū)間上的任意兩個(gè)自變量的值x,x,當(dāng)x
2024-10-19 11:54
【總結(jié)】函數(shù)的奇偶性與周期性、對(duì)稱性課后練習(xí)題詳解1.下列函數(shù)中,既不是奇函數(shù)也不是偶函數(shù)的是( )A.y=B.y=x+C.y=2x+D.y=x+ex解:根據(jù)奇偶函數(shù)的定義可知,選項(xiàng)A,C中的函數(shù)是偶函數(shù),選項(xiàng)B中的函數(shù)是奇函數(shù).故選D.2.(2017·北京)已知函數(shù)f(x)=3x-x,則f(x)( )A.是偶函數(shù),
2025-03-24 12:18
【總結(jié)】函數(shù)的奇偶性與周期性 注意事項(xiàng)::函數(shù)的奇偶性與周期性 :中等難度題型 :10道選擇,4道填空,4道解答。 :有詳細(xì)答案 :試題/課后練習(xí)/單元測(cè)試 一、選擇題 ,在其定義域內(nèi)既是奇函數(shù)...
2025-03-09 22:26
【總結(jié)】抽象函數(shù)的對(duì)稱性、奇偶性與周期性常用結(jié)論:抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,只給出一些函數(shù)符號(hào)及其滿足的條件的函數(shù),如函數(shù)的定義域,解析遞推式,特定點(diǎn)的函數(shù)值,特定的運(yùn)算性質(zhì)等,它是高中函數(shù)部分的難點(diǎn),也是大學(xué)高等數(shù)學(xué)函數(shù)部分的一個(gè)銜接點(diǎn),由于抽象函數(shù)沒有具體的解析表達(dá)式作為載體,因此理解研究起來比較困難,所以做抽象函數(shù)的
2025-06-22 07:48