【總結(jié)】雙曲線的簡單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】理解并掌握雙曲線的幾何性質(zhì).【重點難點】雙曲線的幾何性質(zhì).雙曲線的幾何性質(zhì)【學(xué)習(xí)過程】一、自主預(yù)習(xí)(預(yù)習(xí)教材理P56~P58,文P49~P51找出疑惑之處)復(fù)習(xí)1:寫出滿足下列條件的雙曲線的標(biāo)準(zhǔn)方程:①3,4ab??,焦點在x軸上;②焦點在
2024-12-05 06:47
【總結(jié)】雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)一、雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).1.雙曲線的定義:平面內(nèi)與兩定點F1、F2的距離差的絕對值是常數(shù)(大于零,小于|F1F2|)的點的軌跡叫雙曲線。兩定點F1、F2是焦點,兩焦點間的距離|F1F2|是焦距,用2c表示,常數(shù)用2表示。(1)若|MF1|-|MF2|=2時,曲線只表示焦點F2所對應(yīng)的一支雙曲線.(2)若|MF1|-|MF2|=-2時,曲線只表
2025-07-14 18:45
【總結(jié)】2例題講評[例1]已知定點F1(-3,0),F(xiàn)2(3,0),坐標(biāo)平面上滿足下列條件之一的動點P的軌跡:12(1)8PFPF???12(6)5PFPF???12(2)6PFPF??12(4)4PFPF??12(5
2025-08-05 01:15
【總結(jié)】......雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì)一、雙曲線的標(biāo)準(zhǔn)方程及其幾何性質(zhì).1.雙曲線的定義:平面內(nèi)與兩定點F1、F2的距離差的絕對值是常數(shù)(大于零,小于|F1F2|)的點的軌跡叫雙曲線。兩定點F1、F2是焦點,兩焦點間的距離|F1F
2025-07-14 18:54
【總結(jié)】......雙曲線的簡單幾何性質(zhì)練習(xí)題班級姓名學(xué)號1.已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為( )A.-=
2025-03-24 23:28
【總結(jié)】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【總結(jié)】《雙曲線的幾何性質(zhì)》教學(xué)目標(biāo)?(對稱性、范圍、頂點、離心率);?.三.教學(xué)重、難點:目標(biāo)1;數(shù)形結(jié)合思想的貫徹,運用曲線方程研究幾何性質(zhì).2、對稱性雙曲線的幾何性質(zhì))0,0(12222????ba
2024-11-10 00:28
【總結(jié)】的幾何性質(zhì)(1)222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(2a|F1F2|)F(±c,0)F(0,±c)12222??byax12222
2024-11-21 03:33
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程1.橢圓的定義和等于常數(shù)2a(2a|F1F2|0)的點的軌跡.平面內(nèi)與兩定點F1、F2的距離的1F2F??0,c???0,cXYO??yxM,2.引入問題:差等于常數(shù)的點的軌跡是什么呢?平面內(nèi)與兩定點F1、F2的距離的復(fù)習(xí)雙曲
2024-11-17 19:31
【總結(jié)】一、知識再現(xiàn)前面我們學(xué)習(xí)了橢圓的簡單的幾何性質(zhì):范圍、對稱性、頂點、離心率.我們來共同回顧一下橢圓x2/a2+y2/b2=1(ab0)幾何性質(zhì)的具體內(nèi)容及其研究方法.12222??byax橢圓
2024-11-12 19:05
【總結(jié)】§雙曲線的簡單幾何性質(zhì)(2)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實踐?!緦W(xué)習(xí)目標(biāo)】1.根據(jù)雙曲線的方程研究雙曲線的幾何性質(zhì);2.雙曲線與直線的關(guān)系.【重點】理解雙曲線的方程幾何性質(zhì)和直線的位置關(guān)系【難點】直線和雙曲線的位置關(guān)系一、自主學(xué)習(xí)P5
2024-11-28 00:10
【總結(jié)】四、雙曲線一、雙曲線及其簡單幾何性質(zhì)(一)雙曲線的定義:平面內(nèi)到兩個定點F1,F(xiàn)2的距離差的絕對值等于常數(shù)2a(0<2a<|F1F2|)的點的軌跡叫做雙曲線。定點叫做雙曲線的焦點;|F1F2|=2c,叫做焦距?!駛渥ⅲ孩佼?dāng)|PF1|-|PF2|=2a時,曲線僅表示右焦點F2所對應(yīng)的雙曲線的一支(即右支);當(dāng)|PF2|-|PF1|=2a時,
2025-06-23 22:40
【總結(jié)】第二章圓錐曲線與方程第8課時雙曲線的幾何性質(zhì)(1)教學(xué)目標(biāo):1.熟練掌握雙曲線的范圍,對稱性,頂點等簡單幾何性質(zhì);2.掌握標(biāo)準(zhǔn)方程中cba,,的幾何意義,以及ecba,,,的相互關(guān)系;3.了解坐標(biāo)法中根據(jù)曲線的方程研究曲線的幾何性質(zhì)的一般方法.教學(xué)重點:雙曲線的幾何性質(zhì)教學(xué)難點:
2024-11-19 17:31
【總結(jié)】x2-y2=4的焦點且垂直于實軸的直線與雙曲線交于A,B兩點,則AB的長為()A.2B.4C.8D.42解析:選x2-y2=4的焦點為(±22,0),把x=22代入并解得y=±2,∴|AB|=2-(-2)=4.2.(2
2024-12-05 06:41
【總結(jié)】掌握橢圓的簡單幾何性質(zhì).理解離心率對橢圓扁平程度的影響.橢圓的簡單幾何性質(zhì)第1課時橢圓的簡單幾何性質(zhì)【課標(biāo)要求】【核心掃描】橢圓的簡單幾何性質(zhì).(重點)求橢圓的離心率.(難點)常結(jié)合幾何圖形、方程、不等式、平面向量等內(nèi)容命題.1.2.1.2.3.
2024-11-17 07:49