【總結(jié)】立體幾何中的向量方法(1)____之證明【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.掌握直線的方向向量及平面的法向量的概念;2.掌握利用直線的方向向量及平面的法向量解決平行、垂直、夾角等立體幾何問題.【重點(diǎn)】掌握直線
2024-11-18 16:52
【總結(jié)】空間向量及其運(yùn)算【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.理解空間向量的概念,掌握其表示方法;2.會用圖形說明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡單的立體幾何中的問題.【重點(diǎn)】能用空間向量的運(yùn)算意義及運(yùn)算律解決
【總結(jié)】空間向量的數(shù)量積【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握空間向量夾角和模的概念及表示方法;2.掌握兩個向量的數(shù)量積的計(jì)算方法,并能利用兩個向量的數(shù)量積解決立體幾何中的一些簡單問題.3.掌握空間向量的正交分解及空間向量基本定理和坐標(biāo)表示;4.掌握空
2024-11-28 00:10
【總結(jié)】雙曲線的簡單性質(zhì)課程目標(biāo)學(xué)習(xí)脈絡(luò)1.掌握雙曲線的范圍、對稱性、頂點(diǎn)、漸近線及離心率等簡單幾何性質(zhì).2.感受雙曲線在刻畫現(xiàn)實(shí)世界和解決實(shí)際問題中的作用,體會數(shù)形結(jié)合思想.雙曲線x2a2?y2b2=1(a0,b0)的簡單性質(zhì)知識拓展(1
2024-11-16 23:22
【總結(jié)】立體幾何中的向量方法(1)____之求角【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.掌握利用向量運(yùn)算解幾何題的方法,并能解簡單的立體幾何問題;2.掌握向量運(yùn)算在幾何中求兩點(diǎn)間距離和求空間圖形中的角度的計(jì)算方法.【重點(diǎn)】
【總結(jié)】PF2F1§橢圓及其標(biāo)準(zhǔn)方程(1)【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實(shí)踐。【學(xué)習(xí)目標(biāo)】1.從具體情境中抽象出橢圓的模型;2.掌握橢圓的定義;3.掌握橢圓的標(biāo)準(zhǔn)方程.【重點(diǎn)】理解橢圓的定義【難點(diǎn)】掌握橢圓的標(biāo)準(zhǔn)方程一、自主學(xué)習(xí)P3
2024-11-28 00:11
【總結(jié)】空間向量的數(shù)乘運(yùn)算【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握空間向量的數(shù)乘運(yùn)算律,能進(jìn)行簡單的代數(shù)式化簡;2.理解共線向量定理和共面向量定理及它們的推論;3.能用空間向量的運(yùn)算意義及運(yùn)算律解決簡單的立體幾何中的問題.【重點(diǎn)】能用空間向量的運(yùn)算意義
【總結(jié)】四種命題【學(xué)習(xí)目標(biāo)】了解原命題、逆命題、否命題、逆否命題這四種命題的概念.【自主學(xué)習(xí)】下列四個命題中,命題(1)與命題(2)、(3)、(4)的條件與結(jié)論之間分別有什么關(guān)系?(1)若f(x)是正弦函數(shù),則f(x)是周期函數(shù).(2)若f(x)是周期函數(shù),則f(x)是正弦函數(shù).(3)若f(x)
2024-12-05 06:41
【總結(jié)】§雙曲線的簡單性質(zhì)設(shè)計(jì)人:趙軍偉審定:數(shù)學(xué)備課組【學(xué)習(xí)目標(biāo)】:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).、對稱性及對稱軸,對稱中心、離心率、頂點(diǎn)、漸近線的概念;、會用雙曲線的定義解決實(shí)際問題;通過例題和探究了解雙曲線的第二定義,準(zhǔn)線及焦半徑的概念..【學(xué)習(xí)重點(diǎn)】
2024-11-18 18:59
【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)雙曲線的幾何性質(zhì)(1)教學(xué)案蘇教版選修1-1教學(xué)目標(biāo):1.了解雙曲線簡單幾何性質(zhì),如范圍、對稱性、頂點(diǎn)、漸近線和離心率等.2.能用雙曲線的簡單幾何性質(zhì)解決一些簡單問題.教學(xué)重點(diǎn):雙曲線的幾何性質(zhì)及初步運(yùn)用.教學(xué)難點(diǎn):雙曲線的漸近線.教學(xué)過程:一、復(fù)習(xí)提問引入新課1.橢圓有哪些幾何性
2024-11-20 00:31
【總結(jié)】,第二章圓錐曲線與方程,2.3雙曲線2.3.2雙曲線的簡單幾何性質(zhì),第一頁,編輯于星期六:點(diǎn)三十二分。,第二頁,編輯于星期六:點(diǎn)三十二分。,自,主,預(yù),習(xí),探,新,知,第三頁,編輯于星期六:點(diǎn)三十二分...
2024-10-22 18:45
【總結(jié)】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)導(dǎo)數(shù)學(xué)案2新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時感悟【學(xué)習(xí)目標(biāo)】1.掌握導(dǎo)數(shù)的概念,導(dǎo)數(shù)公式及計(jì)算,導(dǎo)數(shù)在函數(shù)中的應(yīng)用。能夠用導(dǎo)數(shù)解決生活中的優(yōu)化問題。2.掌握定積分的概念,微積分基本定理及定積分的應(yīng)用?!緦W(xué)習(xí)重點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用。【學(xué)習(xí)難點(diǎn)】導(dǎo)數(shù)在研究函數(shù)中
2024-11-19 20:37
【總結(jié)】全稱量詞與存在量詞【使用說明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握全稱量詞與存在量詞的的意義;2.掌握含有量詞的命題:全稱命題和特稱命題真假的判斷.3.掌握對含有一個量詞的命題進(jìn)行否定的方法,要正確掌握量詞否定的各種形式4.明確全稱命題的否定是存在命題,存在命
2024-11-18 16:53
【總結(jié)】課題雙曲線及其標(biāo)準(zhǔn)方程學(xué)習(xí)目標(biāo),幾何圖形和標(biāo)準(zhǔn)方程的推導(dǎo)過程...,承上啟下;可以結(jié)合實(shí)例,觀察分析,培養(yǎng)“應(yīng)用數(shù)學(xué)意識”,進(jìn)一步鞏固數(shù)形結(jié)合思想.學(xué)習(xí)重點(diǎn):掌握雙曲線的標(biāo)準(zhǔn)方程,會利用雙曲線的定義和標(biāo)準(zhǔn)方程解決簡單的問題。學(xué)習(xí)難點(diǎn):幾何圖形和標(biāo)準(zhǔn)方程的推導(dǎo)過程.學(xué)習(xí)方法:以講學(xué)稿為依托
2024-11-19 15:17
【總結(jié)】ABCA1B1C1Myz3.2立體幾何中的向量方法——平行與垂直(1)【學(xué)習(xí)目標(biāo)】1.理解直線的方向向量和平面的法向量;2.會用待定系數(shù)法求平面的法向量;3.能用向量方法證明空間線線、線面、面面的平行與垂直關(guān)系.【自主學(xué)習(xí)】1、點(diǎn)的位置向量:2、直線的方向向量:3、平面的
2024-11-19 23:25