【正文】
ln)21????????????(導(dǎo)數(shù)與微分 222)1(2)1(11)1()1)(1()1()1(11113????????????????????????xxxxxxxxxxxyxxy)()(導(dǎo)數(shù)與微分 !)1()()2)(1(0)0()0()()()()()()(y),()2)(1()(,2!)1()()2)(1(0)()2)(1(lim0)0()(lim)0(1)0(),()2)(1()4(00nnfyxfxxfxfxxfxyxxfnxxxxfnnxnxxxxxfxfyynxxxxynnxx??????????????????????????????????????????????????則:令解法:利用導(dǎo)數(shù)的定義計(jì)算解法求導(dǎo)數(shù)與微分 。有些方程,可以從中解出 y,將 y表示成 x的顯函數(shù)的形式。即函數(shù)的導(dǎo)數(shù)等于函數(shù)對(duì)于函數(shù) )(,)(),( xfdxdydxxfdyxfy ??????xxxxxxxxeeydxeeedeeddyey????????????11)1(11)1l n ()1l n ()1(11 數(shù)求下列函數(shù)的微分和導(dǎo)例導(dǎo)數(shù)與微分 )s i nc os()s i nc os(c osc os)(s i ns i ns i ns i ns i n)2(bxabxbeydxbxabxbebx dxbdxas i m bxbx dbxeaxdebxbxdedebxbxdedybxeyaxaxaxaxaxaxaxaxaxaxee????????????????????????????導(dǎo)數(shù)與微分 222222122221212222221111)1()1(11)1(11)1(11)1l n ()1l n ()3(22xyxdxxxxdxxxxxdxxxxddxxxxddxxxdxxxxddyxxyxx d xx??????????????????????????????????????導(dǎo)數(shù)與微分 ? 例 12 求下列隱函數(shù)的微分和導(dǎo)數(shù) yxyyxydxyxyyxdydxyxdyyxyy dyx dyy dxx dxdyydydx ydxyxyxddyyxyxy232232)2()23(223)(1)222222223223???????????????????????????(導(dǎo)數(shù)與微分 yxyxyxyxyxyxyxyxyxexyeydxexyedydxyedyexyxdex dyy dxdeydey????????????????????????)()()(xx2)(導(dǎo)數(shù)與微分 )1()1()1()1()()(000lnx0lnx3)112?????????????????????????xyxyxyydxxyxyxydydxydyxdx dyy dxdx dyy dxdydyxyyx d yy d xxyyxxyyxyx(導(dǎo)數(shù)與微分 ? 近似計(jì)算公式????????????????xxfxfxxfxxfxfxxfy)()()()()()(000000導(dǎo)數(shù)與微分 4214|111)1()1()(,1,)():13120????????????????????????xxar c t gxfffar c t gxxar c t gxxfar c t g取設(shè)(求下列函數(shù)的近似值例導(dǎo)數(shù)與微分 應(yīng)取弧度值。注:微分公式可以與求dxxxddxxxddxxdar c c t gxdxxdar