【正文】
error in a puter. As far as puting circuits were concerned, we found ourselves with an embarass de richess. For example, we could use vacuum tube diodes for gates as we did in the EDSAC or pentodes with control signals on both grids, a system widely used elsewhere. This sort of choice persisted and the term families of logic came into use. Those who have worked in the puter field will remember TTL, ECL and CMOS. Of these, CMOS has now bee dominant. In those early years, the IEE was still dominated by power engineering and we had to fight a number of major battles in order to get radio engineering along with the rapidly developing subject of in the IEE light current electrical recognised as an activity in its own right. I remember that we had some difficulty in organising a conference because the power engineers’ ways of doing things were not our ways. A minor source of irritation was that all IEE published papers were expected to start with a lengthy statement of earlier practice, something difficult to do when there was no earlier practice Consolidation in the 1960s By the late 50s or early 1960s, the heroic pioneering stage was over and the puter field was starting up in real earnest. The number of puters in the world had increased and they were much more reliable than the very early ones . To those years we can ascribe the first steps in high level languages and the first operating systems. Experimental timesharing was beginning, and ultimately puter graphics was to e along. Above all, transistors began to replace vacuum tubes. This change presented a formidable challenge to the engineers of the day. They had to forget what they knew about circuits and start again. It can only be said that they measured up superbly well to the challenge and that the change could not have gone more smoothly. Soon it was found possible to put more than one transistor on the same bit of silicon, and this was the beginning of integrated circuits. As time went on, a sufficient level of integration was reached for one chip to acmodate enough transistors for a small number of gates or flip flops. This led to a range of chips known as the 7400 series. The gates and flip flops were independent of one another and each had its own pins. They could be connected by offchip wiring to make a puter or anything else. These chips made a new kind of puter possible. It was called a miniputer. It was something less that a mainframe, but still very powerful, and much more affordable. Instead of having one expensive mainframe for the whole organisation, a business or a university was able to have a miniputer for each major department. Before long miniputers began to spread and bee more powerful. The world was hungry for puting power and it had been very frustrating for industry not to be able to supply it on the scale required and at a reasonable cost. Miniputers transformed the situation. The fall in the cost of puting did not start with the miniputer。 畢 業(yè) 設 計(論 文) 外 文 參 考 資 料 及 譯 文 譯文題目: Progress in Computers 微機發(fā)展簡史 學生姓名: 學 號: 專 業(yè): 所在學院: 指導教 師: 職 稱: 2020 年 2 月 26 日 說明: 要求學生結合畢業(yè)設計(論文)課題參閱一篇以上的外文資料,并翻譯至少一萬印刷符(或譯出 3 千漢字)以上的譯文。 it had always been that way. This was what I meant when I referred in my abstract to inflation in the puter industry ‘going the other way’. As time goes on people get more for their money, not less. Research in Computer Hardware. The time that I am describing was a wonderful one for research in puter hardware. The user of the 7400 series could work at the gate and flipflop level and yet the overall level of integration was sufficient to give a degree of reliability far above that of discreet transistors. The researcher, in a university or elsewhere, could build any digital device that a fertile imagination could conjure up. In the Computer Laboratory we built the Cambridge CAP, a fullscale miniputer with fancy capability logic. The 7400 series was still going strong in the mid 1970s and was used for the Cambridge Ring, a pioneering wideband local area work. Publication of the design study for the Ring came just before the announcement of the Ether. Until these two systems appeared, users had mostly been content with teletypebased local area works. Rings need high reliability because, as the pulses go repeatedly round the ring, they must be continually amplified and regenerated. It was the high reliability provided by the 7400 series of chips that gave us the courage needed to embark on the project for the Cambridge Ring. The RISC Movement and Its Aftermath Early puters had simple instruction sets. As time went on designers of mercially available machines added additional features which they thought would improve performance. Few parative measurements were done and on the whole the choice of features depended upon the designer’s intuition. In 1980, the RISC movement that was to change all this broke on the world. The movement opened with a paper by Patterson and Ditzel entitled The Case for the Reduced Instructions Set Computer. Apart from leading to a striking acronym, this title conveys little of the insights into instruction set design which went with the RISC movement, in particular the way it facilitated pipelining, a system whereby several instructions may be in different stages of execution within the processor at the same time. Pipelining was not new, but it was new for small puters The RISC movement benefited greatly from methods which had recently bee available for estimating the performance to be expected from a pu