【總結(jié)】《基本不等式》一、內(nèi)容與內(nèi)容解析本節(jié)課是《普通高中課程標準實驗教科書數(shù)學(xué)》人教A版必修5第三章《不等式》中《基本不等式》的第一課時,主要內(nèi)容是探索基本不等式的生成和證明過程及其簡單的應(yīng)用.本節(jié)內(nèi)容具有變通性、應(yīng)用性的特點,它與線性規(guī)劃呈并列結(jié)構(gòu),可用來求某些函數(shù)的值域和最值,也可解決實際生活中的最優(yōu)化配置問題.本節(jié)內(nèi)容由兩部分構(gòu)成,其一是
2024-12-08 07:03
【總結(jié)】基本不等式的應(yīng)用教學(xué)目標:一、知識與技能1.能利用基本不等式解決最值問題;2.會利用基本不等式解決與三角有關(guān)問題.二、過程與方法1.通過實例體會基本不等式在最值問題中的應(yīng)用;2.通過實例體會總結(jié)基本不等式在應(yīng)用中需要注意的問題.三、情感、態(tài)度與價值觀通過親歷解題的過程,
2024-12-05 10:12
【總結(jié)】3.基本不等式的證明1.(a-b)2≥0?a2+b2≥2ab,那么(a)2+(b)2≥2ab,即a+b2≥ab,當且僅當a=b時,等號成立.+b2叫做a、b的算術(shù)平均數(shù).3.ab叫做a、b的幾何平均數(shù).4.基本不等式a+b2≥ab,說明兩個正數(shù)的幾何平均數(shù)不大于它們的
2024-12-05 10:13
【總結(jié)】如果a,b∈R,那么a2+b2≥2ab(當且僅當a=b時取“=”)證明:222)(2baabba??????????????0)(0)(22babababa時,當時,當abba222??1.定理適用范圍:Rba?,2.取“=”的條件:ba?定理:
2024-11-18 08:48
【總結(jié)】基本不等式:(第1課時)學(xué)習(xí)目標,用數(shù)形結(jié)合的思想理解基本不等式...合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境第24屆國際數(shù)學(xué)家大會于2021年在北京召開,右面是大會的會標,其中的圖案大家見過嗎?在此圖中有哪些幾何圖形?你能發(fā)現(xiàn)圖形中隱含的不等關(guān)系嗎?若我們設(shè)圖中直角三角形的直角邊分別為x,y,你
2024-12-08 02:40
【總結(jié)】含參數(shù)的一元二次不等式的解法解含參數(shù)的一元二次不等式,通常情況下,均需分類討論,那么如何討論呢?對含參一元二次不等式常用的分類方法有三種:一、按項的系數(shù)的符號分類,即;例1解不等式:分析:本題二次項系數(shù)含有參數(shù),,故只需對二次項系數(shù)進行分類討論。解:∵解得方程兩根∴當時,解集為當時,不等式為,解集為當時,解集為例2
2025-04-04 05:10
【總結(jié)】基本不等式:(第2課時)學(xué)習(xí)目標(a0,b0).(小)值問題..合作學(xué)習(xí)一、設(shè)計問題,創(chuàng)設(shè)情境問題1:用籬笆圍成一個面積為100m2的矩形菜園,問這個矩形的長、寬各為多少時,所用籬笆最短.最短的籬笆是多少?問題2:用長為4a的籬笆圍成一個矩形菜園ABCD
2024-12-08 20:20
【總結(jié)】北師大版高中數(shù)學(xué)必修五第三章《不等式》渝水一中數(shù)學(xué)組渝水一中數(shù)學(xué)組簡單線性規(guī)劃復(fù)習(xí)判斷二元一次不等式表示哪一側(cè)平面區(qū)域的方法Oxy11x+y-1=0x+y-10x+y-10
2025-07-18 13:54
【總結(jié)】北師大版高中數(shù)學(xué)必修五第三章《不等式》渝水一中數(shù)學(xué)組一元二次不等式的解法(1)商品促銷?現(xiàn)在有一家商店對某種成本價為650元的電視機有一個促銷活動:?買一臺電視機,單價950元;?買兩臺,單價是900元;?依次類推,每多買一臺,單
2024-09-29 12:36
【總結(jié)】:2baab??復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba復(fù)習(xí)引入1.基本不等式:;)(2,,)1(22”號時取“當當且僅那么如果?????baabbaRba;)(2,,)2
【總結(jié)】第三章不等式知識點新課程標準的要求層次要求領(lǐng)域目標要求不等關(guān)系與不等式1.通過具體情景,了解不等式(組)的實際背景,借助數(shù)軸,能從“形”和“數(shù)”兩個方面來認識不等式2.理解不等式的性質(zhì),能運用不等式的性質(zhì)證明簡單不等式以及解不等式1.通過具體情境,感受在現(xiàn)實世界和日常生活
2024-11-18 08:09
【總結(jié)】第2課時基本不等式的應(yīng)用1.復(fù)習(xí)鞏固基本不等式.2.能利用基本不等式求函數(shù)的最值,并會解決有關(guān)的實際應(yīng)用問題.121.重要不等式a2+b2≥2ab(1)證明:課本應(yīng)用了圖形間的面積關(guān)系推導(dǎo)出了a2+b2≥2ab,也可用分析法證明如下:要證明a2+b
2024-11-18 08:10
【總結(jié)】均值不等式的綜合應(yīng)用22,0,,222abababBabababCDabABCD????????若A=,,,,試比較、、、的大小。CABD???一.均值定理在比較大小中的應(yīng)用:11,lglg,(lglg),2lg(
【總結(jié)】一元二次不等式的應(yīng)用復(fù)習(xí)一元二次方程方程有兩個不等的根0??044)2(22????abacabxa(1)公式法X=方程有一個根0??方程沒有根0??求根的方法:(2)配方法,化為頂點式(3)十字相乘法復(fù)習(xí)一元二次方程:ax2+bx+c=0(a≠0)的根例:求0322???x
2024-11-17 15:05
【總結(jié)】淄川般陽中學(xué)洪貴云基本不等式:(說課)2baab??教材分析教法分析教學(xué)目標教學(xué)過程設(shè)計說明一.教材分析(一)教材的地位和作用(二)課時安排一.教材分析(一)教材的地位和作用基本不等式
2025-08-04 23:52