【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示教學(xué)目標(biāo)1.正確理解掌握兩個向量數(shù)量積的坐標(biāo)表示方法,能通過兩個向量的坐標(biāo)求出這兩個向量的數(shù)量積.2.掌握兩個向量垂直的坐標(biāo)條件,能運(yùn)用這一條件去判斷兩個向量垂直.3.能運(yùn)用兩個向量的數(shù)量積的坐標(biāo)表示去解決處理有關(guān)長度、角度、垂直等問題.重點(diǎn):兩個向量數(shù)量積的坐標(biāo)表示,向量的長度公式,兩個向量垂直的充要條件.難點(diǎn)
2025-11-10 20:36
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點(diǎn)三十三分。,§2從位移的合成到向量的加法2.1向量的加法,第二頁,編輯于星期六:點(diǎn)三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點(diǎn)三十三分...
2025-10-13 18:49
【總結(jié)】第二章平面向量,第一頁,編輯于星期六:點(diǎn)三十三分。,§2從位移的合成到向量的加法2.2向量的減法,第二頁,編輯于星期六:點(diǎn)三十三分。,,自主學(xué)習(xí)梳理知識,課前基礎(chǔ)梳理,第三頁,編輯于星期六:點(diǎn)三十三分...
2025-10-13 18:50
【總結(jié)】平面向量數(shù)量積的應(yīng)用平面向量的數(shù)量積及其性質(zhì)是平面向量的重點(diǎn)內(nèi)容,在平面向量中占重要的地位.利用平面向量的數(shù)量積及其性質(zhì)可以處理向量的許多問題.下面舉例歸納說明.一、求向量的長度(模)求向量的長度的依據(jù)是:①2aaa?·;②設(shè)?a(),xy,則a22??xy.例1已知5ab??,向量a與b的夾角為π3,
2025-11-26 06:36
【總結(jié)】"【志鴻全優(yōu)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)積的坐標(biāo)表示課后訓(xùn)練北師大版必修4"1.已知向量a=(x-1,2),b=(2,1),則a⊥b的充要條件是().A.x=12?B.x=-1C.x=5D.x=02.若a=(2,3),b=(-4,7)
2025-11-24 03:13
【總結(jié)】陜西省榆林育才中學(xué)高中數(shù)學(xué)第1章《三角函數(shù)》3弧度制導(dǎo)學(xué)案北師大版必修4【學(xué)習(xí)目標(biāo)】.,能正確地進(jìn)行弧度與角度的互化.度制表示的弧長公式、扇形面積公式,解決相關(guān)問題.【重點(diǎn)難點(diǎn)】重點(diǎn):弧度與角度之間的換算.難點(diǎn):弧度制的理解.【自主學(xué)習(xí)】1.先選定一個特殊的角,即周角,將它分為360等份
2025-11-26 06:38
【總結(jié)】平面向量數(shù)量積四大考點(diǎn)解析考點(diǎn)一.考查概念型問題例a、b、c是三個非零向量,則下列命題中真命題的個數(shù)()⑴??baab?ba//?;⑵ba,反向????baab?⑶??bababa???;⑷a=b???bacb?分析
2025-11-10 23:18
【總結(jié)】陜西省榆林育才中學(xué)高中數(shù)學(xué)第1章《三角函數(shù)》5正弦函數(shù)的性質(zhì)導(dǎo)學(xué)案北師大版必修4【學(xué)習(xí)目標(biāo)】1.會利用正弦函數(shù)的圖像進(jìn)一步研究和理解正弦函數(shù)的性質(zhì).2.能夠靈活的應(yīng)用正弦函數(shù)的性質(zhì)解決相關(guān)問題.3.經(jīng)歷用正弦函數(shù)的圖像研究正弦函數(shù)性質(zhì)的過程,體會數(shù)形結(jié)合的思想.【重點(diǎn)難點(diǎn)】重點(diǎn):正弦函數(shù)的性質(zhì)及其應(yīng)用.
2025-11-26 01:51
【總結(jié)】平面向量數(shù)量積的坐標(biāo)表示一、教材分析1.本課的地位及作用:平面向量數(shù)量積的坐標(biāo)表示,就是運(yùn)用坐標(biāo)這一量化工具表達(dá)向量的數(shù)量積運(yùn)算,為研究平面中的距離、垂直、角度等問題提供了全新的手段。它把向量的數(shù)量積與坐標(biāo)運(yùn)算兩個知識點(diǎn)緊密聯(lián)系起來,是全章重點(diǎn)之一。:在此之前學(xué)生已學(xué)習(xí)了平面向量的坐標(biāo)表示和平面向量數(shù)量積概念及運(yùn)算,但數(shù)量積是用長度和夾角這兩個概念
2025-11-26 06:37
【總結(jié)】第2課時函數(shù)的極值,會從幾何直觀理解函數(shù)的極值與導(dǎo)數(shù)的關(guān)系,并會靈活應(yīng)用..、參數(shù)取值范圍、判斷方程的根的個數(shù)等問題.若函數(shù)f(x)的定義域為區(qū)間(a,b),導(dǎo)數(shù)f'(x)在(a,b)內(nèi)的圖像如圖所示,用極值的定義你能判斷函數(shù)f(x)在(a,b)內(nèi)的極小值點(diǎn)有幾個嗎?問題
2025-11-10 23:14
【總結(jié)】【金榜教程】2021年高中數(shù)學(xué)試題北師大版必修4(30分鐘50分)一、選擇題(每小題4分,共16分)a=(3,1),b=(x,-3),且a⊥b,則實數(shù)x的值為()(A)-9(B)9(C)1(D)-12.(2021·遼寧高考)已知向量a=(2,1),b
2025-11-24 03:14
【總結(jié)】空間向量的數(shù)量積(二)【學(xué)習(xí)目標(biāo)】利用空間向量的數(shù)量積解決立體幾何中的一些簡單問題?!咀灾鲗W(xué)習(xí)與檢測】在正方體1111ABCDABCD?中,點(diǎn)M是AB的中點(diǎn),(1)求證;1ACDB?三、求1DB與CM所成角的余弦值。完成此題后,請你比較傳統(tǒng)證法與向量證法的優(yōu)劣。
2025-11-26 01:52
【總結(jié)】空間向量的數(shù)量積(一)【學(xué)習(xí)目標(biāo)】;;?!咀灾鲗W(xué)習(xí)】:::補(bǔ)充定義:零向量與任何向量的數(shù)量積為______________.:①___________________②__________________③___________________【自主檢測】
【總結(jié)】知能遷移:從位移的合成到向量的加法()①若|a|=|b|,則a=b或a=-b;②若AB=DC,則A、B、C、D是一個平行四邊形的四個頂點(diǎn);③若a=b,b=c,則a=c;④若a∥b,b∥c,則a∥c.答案D△OAB中,延長BA到C,使AC=
【總結(jié)】§5從力做的功到向量的數(shù)量積,)1.問題導(dǎo)航(1)計算兩個向量的數(shù)量積時,需要確定哪幾個量?(2)向量的數(shù)量積運(yùn)算結(jié)果和向量的線性運(yùn)算結(jié)果有什么區(qū)別?(3)若兩個向量的數(shù)量積大于零,則這兩個向量的夾角一定是銳角嗎?若兩個向量的數(shù)量積小于零,則這兩個向量的夾角一定是鈍角嗎?2
2025-11-19 00:13