【總結(jié)】(二)【學(xué)習(xí)目標(biāo)】1.能正確運(yùn)用橢圓的定義與標(biāo)準(zhǔn)方程解題;2.學(xué)會(huì)用待定系數(shù)法與定義法求曲線的方程奎屯王新敞新疆3.使學(xué)生掌握在求橢圓標(biāo)準(zhǔn)方程的過(guò)程中首先確定其焦點(diǎn)在哪個(gè)坐標(biāo)軸上的方法.【自主學(xué)習(xí)與檢測(cè)】1.設(shè)21,FF為定點(diǎn),|21FF|=6,動(dòng)點(diǎn)M滿足6||||21??MFMF,則動(dòng)點(diǎn)M的軌跡是(
2025-11-10 23:25
【總結(jié)】圓的簡(jiǎn)單幾何性質(zhì)(三)【學(xué)習(xí)目標(biāo)】1.掌握橢圓的第二定義;2.能利用橢圓的第二定義解決相關(guān)的問(wèn)題.【典型例題】例1.點(diǎn)(,)Mxy與定點(diǎn)(4,0)F的距離和它到直線25:4lx?的距離之比是常數(shù)45,求點(diǎn)M的軌跡,并說(shuō)明軌跡是什么圖形.思考:
2025-11-10 19:35
【總結(jié)】ABDClβαDCBADCBAE立體幾何中的向量方法——二面角【學(xué)習(xí)目標(biāo)】能用向量方法解決二面角的計(jì)算問(wèn)題.【自主學(xué)習(xí)】1.二面角的大小是用它的平面角來(lái)度量的,求二面角關(guān)鍵是確定二面角的平面角.探究,二面角α-l-β,AB?α,CD?β,AB⊥
2025-11-10 23:24
【總結(jié)】課題:空間向量的運(yùn)算(二)學(xué)習(xí)目標(biāo):知識(shí)與技能:1、熟練掌握空間向量的數(shù)量積運(yùn)算.2、能用空間向量的運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題過(guò)程與方法:經(jīng)歷向量運(yùn)算平面到空間推廣的過(guò)程,進(jìn)一步掌握類比的數(shù)學(xué)思想方法.情感態(tài)度與價(jià)值觀:學(xué)會(huì)用發(fā)展的眼光看問(wèn)題,認(rèn)識(shí)事物是在不斷發(fā)展變化的,會(huì)用聯(lián)系的觀點(diǎn)看待問(wèn)題。
2025-11-09 18:59
【總結(jié)】,第三章空間向量與立體幾何,3.1空間向量及其運(yùn)算空間向量的數(shù)量積運(yùn)算,第一頁(yè),編輯于星期六:點(diǎn)三十八分。,第二頁(yè),編輯于星期六:點(diǎn)三十八分。,自,主,預(yù),習(xí),探,新,知,第三頁(yè),編輯于星期六:點(diǎn)三十...
2025-10-13 19:05
【總結(jié)】課題空間向量的運(yùn)算(一)學(xué)習(xí)目標(biāo):知識(shí)與技能:1、熟練掌握空間向量的加法、減法、數(shù)乘及其數(shù)量積運(yùn)算.2、能用空間向量的運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題.過(guò)程與方法:經(jīng)歷向量運(yùn)算平面到空間推廣的過(guò)程,進(jìn)一步掌握類比的數(shù)學(xué)思想方法.情感態(tài)度與價(jià)值觀:學(xué)會(huì)用發(fā)展的眼光看問(wèn)題,認(rèn)識(shí)事物是在不斷發(fā)展變化的,會(huì)用聯(lián)系的觀點(diǎn)看
2025-11-24 00:16
【總結(jié)】第三章間向量與立體幾何§空間向量及其運(yùn)算知識(shí)點(diǎn)一空間向量概念的應(yīng)用給出下列命題:①將空間中所有的單位向量移到同一個(gè)點(diǎn)為起點(diǎn),則它們的終點(diǎn)構(gòu)成一個(gè)圓;②若空間向量a、b滿足|a|=|b|,則a=b;③
2025-11-29 22:40
【總結(jié)】第一課時(shí)空間向量及其加減與數(shù)乘運(yùn)算教學(xué)要求:理解空間向量的概念,掌握其表示方法;會(huì)用圖形說(shuō)明空間向量加法、減法、數(shù)乘向量及它們的運(yùn)算律;能用空間向量的運(yùn)算意義及運(yùn)算律解決簡(jiǎn)單的立體幾何中的問(wèn)題.教學(xué)重點(diǎn):空間向量的加減與數(shù)乘運(yùn)算及運(yùn)算律.教學(xué)難點(diǎn):由平面向量類比學(xué)習(xí)空間向量.教學(xué)過(guò)程:一、復(fù)習(xí)引入1、有關(guān)平面向量的一
2025-11-10 22:43
【總結(jié)】雙曲線及其標(biāo)準(zhǔn)方程(二)【學(xué)習(xí)目標(biāo)】進(jìn)一步掌握雙曲線的定義,熟記雙曲線的標(biāo)準(zhǔn)方程.【自主學(xué)習(xí)】名稱橢圓雙曲線圖象xOyxOy定義平面內(nèi)到兩定點(diǎn)21,FF的距離的和為常數(shù)(大于21FF
2025-11-14 01:00
【總結(jié)】立體幾何中的向量方法(1)____之證明【使用說(shuō)明及學(xué)法指導(dǎo)】1.先自學(xué)課本,理解概念,完成導(dǎo)學(xué)提綱;2.小組合作,動(dòng)手實(shí)踐?!緦W(xué)習(xí)目標(biāo)】1.掌握直線的方向向量及平面的法向量的概念;2.掌握利用直線的方向向量及平面的法向量解決平行、垂直、夾角等立體幾何問(wèn)題.【重點(diǎn)】掌握直線
2025-11-09 16:52
【總結(jié)】課題.3空間向量運(yùn)算的坐標(biāo)表示學(xué)習(xí)目標(biāo):知識(shí)與技能掌握空間向量加法、減法、數(shù)乘、數(shù)量積運(yùn)算的坐標(biāo)表示以及向量的長(zhǎng)度、夾角公式的坐標(biāo)表示,并能初步應(yīng)用這些知識(shí)解決簡(jiǎn)單的立體幾何問(wèn)題.過(guò)程與方法①通過(guò)將空間向量運(yùn)算與熟悉的平面向量的運(yùn)算進(jìn)行類比,使學(xué)生掌握空間向量運(yùn)算的坐標(biāo)表示,滲透類比的數(shù)學(xué)方法;
【總結(jié)】拋物線的簡(jiǎn)單幾何性質(zhì)【學(xué)習(xí)目標(biāo)】掌握拋物線的范圍、對(duì)稱性、頂點(diǎn)、離心率等幾何性質(zhì).【自主學(xué)習(xí)】根據(jù)拋物線的標(biāo)準(zhǔn)方程)0(22??ppxy,研究它的幾何性質(zhì):1.范圍2.對(duì)稱性3.頂點(diǎn)4.離心率拋物線上的點(diǎn)M與焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率,用e表示.由拋物線的定義可知,
2025-11-26 06:40
【總結(jié)】含有一個(gè)量詞的命題的否定【學(xué)習(xí)目標(biāo)】能夠根據(jù)含有一個(gè)量詞的命題與它們的否定在形式上的變化規(guī)律,正確地對(duì)含有一個(gè)量詞的命題進(jìn)行否定.【自主學(xué)習(xí)】含有一個(gè)量詞的命題的否定(1)全稱命題p:xM??,p(x),它的否定非p:,全稱命題的否定是命題.(2)特稱命題
【總結(jié)】講練學(xué)案部分§空間向量及其加減運(yùn)算.知識(shí)點(diǎn)一空間向量的概念判斷下列命題是否正確,若不正確,請(qǐng)簡(jiǎn)述理由.①向量AB與AC是共線向量,則A、B、C、D四點(diǎn)必在一條直線上;②②單位向量都相等;③任一向量與它的相反向量不相等;④四邊形ABCD是平行四邊形
2025-11-29 01:49
【總結(jié)】§3.空間向量的數(shù)乘運(yùn)算知識(shí)點(diǎn)一空間向量的運(yùn)算已知ABCD—A′B′C′D′是平行六面體.(1)化簡(jiǎn)12'23AABCAB??(2)設(shè)M是底面ABCD的中心,N是側(cè)面BCC′B′對(duì)角線BC′上的34分點(diǎn),設(shè)'MNABADAA???