【總結(jié)】等比數(shù)列(二)課時(shí)目標(biāo).,能用性質(zhì)靈活解決問題.1.一般地,如果m,n,k,l為正整數(shù),且m+n=k+l,則有________________,特別地,當(dāng)m+n=2k時(shí),am·an=________.2.在等比數(shù)列{an}中,每隔k項(xiàng)(k∈N+)取出一項(xiàng),按
2024-12-05 01:49
【總結(jié)】第一篇:高中數(shù)學(xué)《等差數(shù)列》教案2蘇教版必修5 第4課時(shí):§(2) 【三維目標(biāo)】: 一、知識與技能 ,掌握等差數(shù)列的特殊性質(zhì)及應(yīng)用;掌握證明等差數(shù)列的方法; ;會(huì)求兩個(gè)數(shù)的等差中項(xiàng); ,發(fā)...
2024-11-06 22:00
【總結(jié)】數(shù)列第一章§2等差數(shù)列第一章第1課時(shí)等差數(shù)列的概念及通項(xiàng)公式課堂典例講練2易混易錯(cuò)點(diǎn)睛3課時(shí)作業(yè)5課前自主預(yù)習(xí)1本節(jié)思維導(dǎo)圖4課前自主預(yù)習(xí)奧運(yùn)會(huì)是舉世矚目、振奮人心的體育盛會(huì).第一屆現(xiàn)代奧運(yùn)會(huì)于1896年在希臘雅典舉行,此后每4年舉行一次,奧運(yùn)
2024-11-17 03:40
【總結(jié)】等差數(shù)列教學(xué)目標(biāo)::理解等差數(shù)列的概念,了解等差數(shù)列的通項(xiàng)公式的推導(dǎo)過程及思想,掌握等差數(shù)列的通項(xiàng)公式。:培養(yǎng)學(xué)生觀察、歸納能力,在學(xué)習(xí)過程中,體會(huì)歸納思想和化歸思想并加深認(rèn)識;通過概念的引入與通項(xiàng)公式的推導(dǎo),培養(yǎng)學(xué)生分析探索能力,增強(qiáng)運(yùn)用公式解決實(shí)際問題的能力:①通過個(gè)性化的學(xué)習(xí)增強(qiáng)學(xué)生的自信心和意志力。②通過師生、
2024-12-08 07:06
【總結(jié)】等差數(shù)列前n項(xiàng)和教學(xué)目標(biāo):1.掌握等差數(shù)列前n項(xiàng)和公式及其獲取思路.2.會(huì)用等差數(shù)列的前n項(xiàng)和公式解決一些簡單的與前n項(xiàng)和有關(guān)的問題.教學(xué)重難點(diǎn)::等差數(shù)列n項(xiàng)和公式的理解、推導(dǎo).:獲得等差數(shù)列前n項(xiàng)和公式推導(dǎo)的思路.一、課前預(yù)習(xí):閱讀教材:P15---P181.等差數(shù)列求和公式
2024-12-03 03:12
【總結(jié)】數(shù)列的函數(shù)特性課時(shí)目標(biāo),明確遞推公式與通項(xiàng)公式的異同;的遞推公式寫出數(shù)列的前幾項(xiàng);,能用函數(shù)的觀點(diǎn)研究數(shù)列.1.如果數(shù)列{an}的第1項(xiàng)或前幾項(xiàng)已知,并且數(shù)列{an}的任一項(xiàng)an與它的前一項(xiàng)an-1(或前幾項(xiàng))間的關(guān)系可以用一個(gè)式子來表示,那么這個(gè)式子就叫做這個(gè)數(shù)列的遞推公式.2.?dāng)?shù)列可以看作是一
2024-12-05 06:39
【總結(jié)】等差數(shù)列第1課時(shí)等差數(shù)列1.理解等差數(shù)列的概念,明確“同一個(gè)常數(shù)”的含義.2.掌握等差數(shù)列的通項(xiàng)公式及其應(yīng)用.3.會(huì)判定或證明等差數(shù)列;了解等差數(shù)列與一次函數(shù)的關(guān)系.1231.等差數(shù)列文字語言一般地,如果一個(gè)數(shù)列從第2項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的差等于同一個(gè)
2024-11-17 17:05
【總結(jié)】等差數(shù)列的概念與通項(xiàng)公式A組基礎(chǔ)鞏固1.{an}為等差數(shù)列,且a7-2a4=-1,a3=0,則公差d等于()A.-2B.-12D.2解析:根據(jù)題意,得a7-2a4=a1+6d-2(a1+3d)=-1,∴a1=∵a3=a1+2d=0,∴d=-12.答案:B2.等
2024-12-08 20:23
【總結(jié)】陜西省咸陽市涇陽縣云陽中學(xué)高中數(shù)學(xué)n項(xiàng)和導(dǎo)學(xué)案北師大版必修5【學(xué)習(xí)目標(biāo)】n項(xiàng)和公式n項(xiàng)和公式解決等差數(shù)列的問題【學(xué)習(xí)重點(diǎn)】在具體的問題情境中,如何靈活運(yùn)用等差數(shù)列的前n項(xiàng)和公式解決相應(yīng)的實(shí)際問題2.鞏固練習(xí)(1)設(shè)nS為等差數(shù)列{}na的前n項(xiàng)和,若33,S?624S
2024-11-19 07:34
【總結(jié)】第一篇:高中數(shù)學(xué)《等差數(shù)列》教案新人教A數(shù)學(xué)必修5 差數(shù)列(1)教學(xué)目標(biāo)1.明確等差數(shù)列的定義. 2.掌握等差數(shù)列的通項(xiàng)公式,解決知道an,a1,d,n中的三個(gè),求另外一個(gè)的問題 3.培養(yǎng)學(xué)生觀...
2024-10-27 02:21
【總結(jié)】課題:必修⑤三維目標(biāo):1、知識與技能(1)理解等差數(shù)列前項(xiàng)和的定義以及等差數(shù)列前項(xiàng)和公式推導(dǎo)的過程,并理解推導(dǎo)此公式的方法——倒序相加法,記憶公式的兩種形式;(2)用方程思想認(rèn)識等差數(shù)列前項(xiàng)和的公式,利用公式求;等差數(shù)列通項(xiàng)公式與前項(xiàng)和的公式兩套公式涉及五個(gè)字母,已知其中三個(gè)量求另兩個(gè)值;(3)會(huì)用等差數(shù)列的前項(xiàng)和公式解決一些簡單的與前項(xiàng)和有關(guān)的問題.
2025-06-07 23:27
【總結(jié)】等比數(shù)列(一)課時(shí)目標(biāo),能夠利用定義判斷一個(gè)數(shù)列是否為等比數(shù)列.2.掌握等比數(shù)列的通項(xiàng)公式并能簡單應(yīng)用.,能夠應(yīng)用等比中項(xiàng)的定義解決有關(guān)問題.1.如果一個(gè)數(shù)列從第______項(xiàng)起,每一項(xiàng)與它的前一項(xiàng)的______都等于同一個(gè)常數(shù),那么這個(gè)數(shù)列叫做等比數(shù)列.這個(gè)常數(shù)叫做等比數(shù)列的______,通常用字母____表示
【總結(jié)】等差數(shù)列第二課時(shí):an-an-1=d(n≥2)或an+1-an=d(n∈N*)2.通項(xiàng)公式:an=a1+(n-1)d一、復(fù)習(xí){an}為等差數(shù)列?3.等差數(shù)列的性質(zhì)an+1-an=dan+1=an+d?1212()nnnaaa?????例{an}的通項(xiàng)公
2024-11-17 17:35
【總結(jié)】等差數(shù)列的概念及通項(xiàng)公式?學(xué)習(xí)目標(biāo):,理解等差數(shù)列的概念..,發(fā)現(xiàn)數(shù)列的等差關(guān)系,并能用有關(guān)知識解決相應(yīng)的問題..復(fù)習(xí)數(shù)列的有關(guān)概念1按一定的次序排列的一列數(shù)叫做數(shù)列。數(shù)列中的每一個(gè)數(shù)叫做這個(gè)數(shù)列的項(xiàng)。數(shù)列中的各項(xiàng)依次叫做這個(gè)數(shù)列的第1項(xiàng)(或首項(xiàng))用表示,1a第2項(xiàng)
2024-11-17 17:33
【總結(jié)】等差數(shù)列的前n項(xiàng)和·例題解析【例1】等差數(shù)列前10項(xiàng)的和為140,其中,項(xiàng)數(shù)為奇數(shù)的各項(xiàng)的和為125,求其第6項(xiàng).解依題意,得10ad=140aaaaa=5a20d=1251135791++++++101012()??????解
2024-11-20 03:12