【總結】雙曲線的簡單幾何性質(2)焦點在x軸上的雙曲線的幾何性質雙曲線標準方程:YX12222??byax0??byax1、范圍:x≥a或x≤-a2、對稱性:關于x軸,y軸,原點對稱。3、頂點:A1(-a,0),A2(a,0)4、軸:實軸A1A2虛軸
2024-11-17 23:34
【總結】江蘇省漣水縣第一中學高中數(shù)學橢圓的幾何性質(2)教學案蘇教版選修1-1教學目標:1.進一步熟悉橢圓的基本幾何性質:范圍、對稱性、頂點、長軸、短軸,研究并理解橢圓的離心率的概念.來2.掌握橢圓標準方程中a,b,c,e的幾何意義及相互關系.教學重點:橢圓的幾何性質——范圍、對稱性、頂點、離心率.教學難點:
2024-11-20 00:31
【總結】第二章圓錐曲線與方程拋物線的簡單幾何性質xyo準線方程焦點坐標標準方程圖形xyoFy2=2px(p0)x2=2py(p0)x2=-2py(p0)xyoFxyoFxyoFy
2025-08-05 07:31
【總結】江蘇省漣水縣第一中學高中數(shù)學橢圓的幾何性質(1)教學案蘇教版選修1-1教學目標:1.掌握橢圓的基本幾何性質:范圍、對稱性、頂點、長軸、短軸.2.感受如何運用方程研究曲線的幾何性質.教學重點:橢圓的幾何性質——范圍、對稱性、頂點.教學難點:橢圓幾何性質的研究過程,即如何運用橢圓標準方程研究橢圓的幾何性質.教學過程:
2024-12-04 18:02
【總結】第6課時拋物線的簡單性質的應用,會利用幾何性質求拋物線的標準方程、焦點坐標、準線方程、焦半徑和通徑.,理解拋物線的焦點弦的特殊意義,結合定義得到焦點弦的公式,并利用該公式解決一些相關的問題.我們已經(jīng)學習了拋物線及拋物線的簡單幾何性質,拋物線的幾何性質應用非常廣泛,通過類比橢圓、雙曲線的幾何性質,結合拋物線的標
2024-11-19 23:17
【總結】拋物線的標準方程教學目標]知識與技能1.掌握拋物線的定義和標準方程及其推導過程,理解拋物線中的基本量;2.掌握求拋物線的標準方程的基本方法;[過程與方法情感態(tài)度與價值觀教學重難點能根據(jù)已知條件求拋物線的標準方程教學流程\內(nèi)容\板書關鍵點撥加工潤色一、復
2024-11-20 00:30
【總結】拋物線的簡單性質同步練習一,選擇題:1、焦點為10,8???????的拋物線的標準方程為()A、214xy??B、22xy??C、22yx??D、22yx?2、拋物線22yx??的通徑長為()A、4B、2
2024-12-05 06:37
【總結】標準方程生活中存在著各種形式的物體都是利用了拋物線的原理我們學習過的二次函數(shù)的圖象就是拋物線我們對拋物線雖然熟悉,但你知道它是滿足什么條件的動點的軌跡嗎?思考:xyox=y=x2-x+1y=x2-xy=x211B案第1題:l
2024-11-18 12:09
【總結】江蘇省建陵高級中學2020-2020學年高中數(shù)學橢圓的幾何性質(1)導學案(無答案)蘇教版選修1-1【學習目標】;?!菊n前預習】221625400xy??表示什么樣的曲線,你能利用以前學過的知識畫出它的圖形嗎?,橢圓標準方程221(0)xyabab????有什么特點31頁至第33頁,回答
【總結】江蘇省響水中學高中數(shù)學第2章《圓錐曲線與方程》拋物線的簡單幾何性質的應用1導學案蘇教版選修1-1學習目標:、頂點坐標和離心率并展開應用.了解""p的意義,會求簡單的拋物線方程.、橢圓的類比,體會探究的樂趣,激發(fā)學生的學習熱情.重點:拋物線的簡單幾何性質難點:正確地根據(jù)方程討論曲線的幾
2024-11-19 17:31
【總結】教師用書獨具演示1.1命題及其關系1.1.1四種命題●三維目標1.知識與技能(1)知道命題的含義,能正確指出一個命題的題設和結論,同時會判斷一個命題是真命題,還是假命題.(2)體會用邏輯推理證明一個命題是真命題的方法,培養(yǎng)數(shù)學思維的嚴謹性.2.過程與方法學生先學,
2024-11-17 23:35
【總結】洪澤外國語中學程懷宏如何精確地設計、制作、建造出現(xiàn)實生活中這些橢圓形的物件呢?生活中的橢圓一.問題情境?動畫演示:“神六”飛行注意:橢圓定義中容易遺漏的三處地方:(1)必須在平面內(nèi).(2)兩個定點---兩點間距離確定.(3)繩長--軌跡上任意點到兩定點
2024-11-18 08:56
【總結】【課堂新坐標】(教師用書)2021-2021學年高中數(shù)學橢圓的幾何性質課后知能檢測蘇教版選修1-1一、填空題1.x2+2y2=2的上頂點坐標是________.【解析】將方程x2+2y2=2化為:x22+y2=1,∴a2=2,b2=1,∴b=1.∴上頂點坐標為(0,1).
【總結】江蘇省建陵高級中學2021-2021學年高中數(shù)學雙曲線的幾何性質(1)導學案(無答案)蘇教版選修1-1【學習目標】1、理解雙曲線的范圍、對稱性、頂點、漸近線、離心率等幾何性質;2、理解雙曲線標準方程中ab、、c的幾何意義?!菊n前預習】1、對于雙曲線22194yx??,它的頂點坐標為_____________
【總結】雙曲線的定義:平面內(nèi)與兩定點F1,F(xiàn)2的距離的差的絕對值等于常數(shù)2a點的軌跡叫做雙曲線。12()FF小于F1,F2-----焦點||MF1|-|MF2||=2a|F1F2|-----焦距.F2.F1Myox注意:對于雙曲線定義須抓住三點