【總結(jié)】“數(shù)列通項公式及數(shù)列求和”課例一、設(shè)計理念首先通過解剖導學案,讓學生經(jīng)歷知識網(wǎng)絡(luò)的自主構(gòu)建,然后在匯報和例題解法展示活動中進行知識網(wǎng)絡(luò)的完善和思想、方法的總結(jié)提升,以導學案為載體、立足過程、增強解決數(shù)列綜合題的能力。二、教材分析㈠教材的地位和作用數(shù)列是高中數(shù)學的一個重要組成部分,數(shù)列是函數(shù)概念的繼續(xù)和延伸,幾乎每年高考試卷中都會出現(xiàn)一道數(shù)列綜合題,且這一部分內(nèi)容與函數(shù)、幾何
2025-04-17 01:43
【總結(jié)】精品資源普通高中課程標準實驗教科書—數(shù)學[人教版]高三新數(shù)學第一輪復習教案(講座30)—數(shù)列求和及數(shù)列實際問題一.課標要求:1.探索并掌握一些基本的數(shù)列求前n項和的方法;2.能在具體的問題情境中,發(fā)現(xiàn)數(shù)列的數(shù)列的通項和遞推關(guān)系,并能用有關(guān)等差、等比數(shù)列知識解決相應(yīng)的實際問題。二.命題走向數(shù)列求和和數(shù)列綜合及實際問題在高考中占有重要的地位,一般情況下都是出一道解答題
2025-03-25 06:47
【總結(jié)】......數(shù)列求和專題復習一、公式法:::;;例1:已知,求的前項和.例2:設(shè),,求的最大值.二
2025-03-25 02:51
【總結(jié)】§等差數(shù)列一.課程目標;;,并能用等差數(shù)列的有關(guān)知識解決相應(yīng)的問題;.二.知識梳理如果一個數(shù)列從第2項起,每一項與它的前一項的差等于同一個常數(shù),那么這個數(shù)列就叫做等差數(shù)列,這個常數(shù)叫做等差數(shù)列的公差,公差通常用字母d表示.數(shù)學語言表達式:an+1-an=d(n∈N*,d為常數(shù)),或an-an-1=d(n≥2,d為常數(shù)).2.
2025-03-25 06:56
【總結(jié)】第十四講:數(shù)列求和及綜合應(yīng)用一、考綱和課標要求:1、掌握數(shù)列求和的常見的基本方法2、解決數(shù)列間綜合及數(shù)列與其他知識綜合的相關(guān)問題3、09考綱有2個C級要求在這部分出現(xiàn)二:本專題需解決的問題:(1)化歸為基本數(shù)列的求和問題(2)數(shù)列間的綜合(基本數(shù)列、關(guān)聯(lián)數(shù)列)(3)數(shù)列與其
2024-11-12 01:26
【總結(jié)】數(shù)列求和的方法將一個數(shù)列拆成若干個簡單數(shù)列,然后分別求和.將數(shù)列相鄰的兩項(或若干項)并成一項(或一組)得到一個新數(shù)列(容易求和).一、拆項求和二、并項求和例求和Sn=1×2+2×3+…+n(n+1).例求和Sn=1-2+3-4+5-6+…+(-1)n+1
2024-11-11 05:50
【總結(jié)】第五節(jié)數(shù)列求和基礎(chǔ)梳理數(shù)列求和的常用方法(1)公式法①直接用等差、等比數(shù)列的求和公式.②掌握一些常見的數(shù)列的前n項和.1+2+3+…+n=____________;1+3+5+…+(2n-1)=______.(1)2nn?n2(2)倒序相加法如果一個數(shù)列{
2024-11-12 18:12
【總結(jié)】復習課: 數(shù)列求和 一、【知識梳理】 1.等差、等比數(shù)列的求和公式,公比含字母時一定要討論. 2.錯位相減法求和:如:已知成等差,成等比,求. 3.分組求和:把數(shù)列的每一項分成若干項,使其轉(zhuǎn)...
2025-10-02 19:48
2024-11-09 08:08
【總結(jié)】數(shù)列求和、數(shù)列的綜合應(yīng)用練習題1.數(shù)列共十項,且其和為240,則的值為()2.已知正數(shù)等差數(shù)列的前20項的和為100,那么的最大值是()
【總結(jié)】數(shù)列的求和與最值(高考一輪復習)數(shù)列的最值①,時,有最大值;,時,有最小值;②最值的求法:①若已知,的最值可求二次函數(shù)的最值;可用二次函數(shù)最值的求法();②或者求出中的正、負分界項,即:若已知,則最值時的值()可如下確定或。1、等差數(shù)列中,,則前項的和最大。2、已知數(shù)列,,它的最小項是3、設(shè){an
2025-04-17 01:40
【總結(jié)】數(shù)列·例題解析【例1】求出下列各數(shù)列的一個通項公式(1)14(2)23,,,,,?,,,,?38516732964418635863(3)(4)12??13181151242928252,,,,?,,,
2024-11-11 08:37
【總結(jié)】課題:數(shù)列求和考綱要求:掌握等差、等比數(shù)列的求和公式及其應(yīng)用;掌握常見的數(shù)列求和方法(公式法、倒序相加、錯位相減,分組求和、拆項、裂項求和等求和方法).教材復習基本公式法:等差數(shù)列求和公式:等比數(shù)列求和公式: ;;.錯位相消法:給各邊同乘以一個適當?shù)臄?shù)或式,然后把所得的等式和原等式相減,對應(yīng)項相互抵消,最后得出前項和.一般適應(yīng)于數(shù)列的前向求和,其中成等差
【總結(jié)】一、數(shù)列大題剖析考點一:等差、等比數(shù)列的概念與性質(zhì)(a是常數(shù),且),(),數(shù)列的首項,()。(1)證明:從第2項起是以2為公比的等比數(shù)列;(2)設(shè)為數(shù)列的前n項和,且是等比數(shù)列,求實數(shù)的值;(3)當a0時,求數(shù)列的最小項??键c二:求數(shù)列的通項與求和例題2已知數(shù)列滿足,.(Ⅰ)求數(shù)列的通項公式;(Ⅱ)設(shè),求數(shù)列的前項和;(Ⅲ)
【總結(jié)】等差數(shù)列求和教學設(shè)計 一、教學目標: 1、知識與技能 (1)初步掌握一些特殊數(shù)列求其前n項和的常用方法. (2)通過把某些既非等差數(shù)列,又非等比數(shù)列的數(shù)列化歸成等差數(shù)列...
2024-12-07 01:18