【總結(jié)】雙曲線的簡單幾何性質(zhì)(一)復(fù)習回顧(1)雙曲線的標準方程.xyo-aa(-x,-y)(-x,y)(x,y)(x,-y)探究一.)(幾何性質(zhì)的,分析雙曲線0012222????babyax(1)范圍(2)對稱性x≥a,或x≤-a在標準方
2024-11-18 01:22
【總結(jié)】雙曲線的簡單幾何性質(zhì)(二)取值范圍。的,求率為一象限的那條漸近線斜,設(shè)該雙曲線過第,的離心率,已知雙曲線kkebabyax]22[)00(2222?????的方程,求直線若兩點,于交的直線與斜率為雙曲線Lyx4|AB|.BAL212322???.22的取
2024-11-18 15:25
【總結(jié)】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax12
2024-11-18 08:47
【總結(jié)】教學(xué)教法分析課前自主導(dǎo)學(xué)易錯易誤辨析課堂互動探究當堂雙基達標課后知能檢測教師備課資源雙曲線的幾何性質(zhì)●三維目標1.知識與技能(1)使學(xué)生理解和掌握雙曲線的范圍、對
2024-11-17 15:13
【總結(jié)】課例:雙曲線的簡單幾何性質(zhì)(第一課時)臨城縣職教中心李福穎問題背景:雙曲線的簡單幾何性質(zhì)與橢圓的性質(zhì)從研究內(nèi)容上有相同之處,在學(xué)習了橢圓的幾何性質(zhì)之后,教材對本節(jié)教學(xué)內(nèi)容介紹得較簡潔,主要以知識點的形式出現(xiàn)。另外相對于橢圓來說,漸近線是雙曲線的一個全新的性質(zhì),也是學(xué)生在數(shù)學(xué)學(xué)習中首次遇到的概念,而教材中并未給出明確的定義,也未用相關(guān)知識加以說明,使得學(xué)生對于這一概念的理解缺乏
2024-10-06 19:18
【總結(jié)】●教學(xué)目標、實虛半軸、焦點、離心率、漸近線方程.●教學(xué)重點雙曲線的幾何性質(zhì)●教學(xué)難點雙曲線的漸近線●教學(xué)方法學(xué)導(dǎo)式●教具準備幻燈片、三角板●教學(xué)過程:師:上一節(jié),我們學(xué)習了雙曲
2024-12-08 01:51
【總結(jié)】鹽城市時楊中學(xué)2021年達標課教學(xué)簡案學(xué)科數(shù)學(xué)授課教師張發(fā)軍授課班級高二(7)教學(xué)內(nèi)容雙曲線的幾何性質(zhì)(2)課型新授課課題:雙曲線的幾何性質(zhì)(2)一、三維目標:1、知識與技能:使學(xué)生掌握雙曲線的如下性質(zhì):對稱性、截距、頂點、軸、中心、離心率和準線。使學(xué)生能夠根據(jù)雙曲線的漸近線、確定雙曲線的范
2024-12-08 07:53
【總結(jié)】新課標人教版課件系列《高中數(shù)學(xué)》選修1-1《雙曲線的簡單幾何性質(zhì)》教學(xué)目標?知識與技能目標?了解平面解析幾何研究的主要問題:(1)根據(jù)條件,求出表示曲線的方程;(2)通過方程,研究曲線的性質(zhì).理解雙曲線的范圍、對稱性及對稱軸,對稱中心、離心率、頂點、漸近線的概念;掌握雙曲線的標準方程、會用雙曲線的定義解決實際
2024-11-30 12:26
【總結(jié)】選修1-1雙曲線的幾何性質(zhì)一、選擇題1.已知雙曲線的離心率為2,焦點是(-4,0),(4,0),則雙曲線方程為()24-y212=1B.x212-y24=1210-y26=1D.x26-y210=1[答案]A[解析]∵e=
2024-11-24 22:00
【總結(jié)】雙曲線的性質(zhì)(一)222bac??定義圖象方程焦點的關(guān)系||MF1|-|MF2||=2a(02a|F1F2|)F(±c,0)F(0,±c)12222??byax122
2024-11-12 16:45
【總結(jié)】第二章§3理解教材新知把握熱點考向應(yīng)用創(chuàng)新演練知識點考點一考點二考點三如圖是阿聯(lián)酋阿布扎比國家展覽中心(ADNEC).阿布扎比是阿聯(lián)酋的首都,這個雙曲線塔形建筑是中東最大的展覽中心.它的形狀就像一條雙曲線.這
2024-11-17 23:47
【總結(jié)】雙曲線1.到兩定點、的距離之差的絕對值等于6的點的軌跡()A.橢圓 B.線段 C.雙曲線 D.兩條射線2.方程表示雙曲線,則的取值范圍是 ()A. B. C. D.或3.雙曲線的焦距是 ()A.4 B. C.8 D.與有關(guān)4.已知m,n為兩個不相等的非零實數(shù),則方程mx-y+n=0與nx2
2025-06-23 15:17
【總結(jié)】......【學(xué)習目標】、范圍、定點、離心率、漸近線等簡單性質(zhì)...【要點梳理】要點一、雙曲線的簡單幾何性質(zhì)雙曲線(a>0,b>0)的簡單幾何性質(zhì)范圍雙曲線上所有的點都在兩條平行直
2025-06-25 22:37
【總結(jié)】 篇一:2-2-2雙曲線的幾何性質(zhì)練習題及 篇二:雙曲線的簡單幾何性質(zhì)練習題二 《雙曲線的簡單幾何性質(zhì)》練習題二 ,虛軸的一個端點為B,假設(shè)直線FB與該雙曲線的一條漸近線垂直,那么雙曲線的...
2025-03-25 22:11
【總結(jié)】雙曲線1.3.4.點P處的切線PT平分△PF1F2在點P處的內(nèi)角.5.PT平分△PF1F2在點P處的內(nèi)角,則焦點在直線PT上的射影H點的軌跡是以實軸為直徑的圓,除去實軸的兩個端點.6.以焦點弦PQ為直徑的圓必與對應(yīng)準線相交.7.以焦點半徑PF1為直徑的圓必與以實軸為直徑的圓外切.8.設(shè)P為雙曲線上一點,則△PF1F2的內(nèi)切圓必切于
2025-08-05 04:18