【總結(jié)】排列、組合與概率的復(fù)習(xí)知識(shí)目標(biāo):1.排列組合問題的常見處理方法總結(jié)2.概率問題的常見處理方法總結(jié)能力要求:數(shù)學(xué)思想:逐步培養(yǎng)學(xué)生養(yǎng)成運(yùn)用分類與分步、對(duì)立事件等數(shù)學(xué)思想方法思考問題、解決問題的習(xí)慣通過常見問題處理方法的總結(jié),使學(xué)生能夠熟練處理排列、組合與概率的常規(guī)問題一、排列、組合常見問題的處理方法回顧:
2025-10-31 22:48
【總結(jié)】排列組合應(yīng)用題解法綜述計(jì)數(shù)問題中排列組合問題是最常見的,由于其解法往往是構(gòu)造性的,因此方法靈活多樣,不同解法導(dǎo)致問題難易變化也較大,而且解題過程出現(xiàn)“重復(fù)”和“遺漏”的錯(cuò)誤較難自檢發(fā)現(xiàn)。因而對(duì)這類問題歸納總結(jié),并把握一些常見解題模型是必要的?;驹斫M合排列排列數(shù)公式組合數(shù)
2025-08-15 22:10
【總結(jié)】排列組合專題訓(xùn)練1.(2014?四川)六個(gè)人從左至右排成一行,最左端只能排甲或乙,最右端不能排甲,則不同的排法共有( ?。.192種B.216種C.240種D.288種考點(diǎn):排列、組合及簡單計(jì)數(shù)問題.菁優(yōu)網(wǎng)版權(quán)所有專題:應(yīng)用題;排列組合.分析:分類討論,最左端排甲;最左端只排乙,最右端不能排甲,根據(jù)加法原理可得結(jié)論.
2025-08-05 07:27
【總結(jié)】二項(xiàng)式定理歷年高考試題薈萃(三)一、填空題(本大題共24題,共計(jì)102分)1、(1+2x)5的展開式中x2的系數(shù)是________.(用數(shù)字作答)2、的展開式中的第5項(xiàng)為常數(shù)項(xiàng),那么正整數(shù)的值是??????????.3、已知,則(的值等于?
2025-07-26 08:16
【總結(jié)】第六節(jié)排列與組合(理)重點(diǎn)難點(diǎn)重點(diǎn):1.兩個(gè)計(jì)數(shù)原理的理解和應(yīng)用.2.排列與組合的定義、計(jì)算公式,組合數(shù)的兩個(gè)性質(zhì).難點(diǎn):1.如何區(qū)分實(shí)際問題中的“類”與“步”.2.組合數(shù)的性質(zhì)和有限制條件的排列組合問題.知識(shí)歸納1.分類計(jì)數(shù)原理完成一件事,
2025-08-07 11:23
【總結(jié)】高二數(shù)學(xué)集體備課學(xué)案與教學(xué)設(shè)計(jì)章節(jié)標(biāo)題選修2-3排列組合專題計(jì)劃學(xué)時(shí)1學(xué)案作者楊得生學(xué)案審核張愛敏高考目標(biāo)掌握排列、組合問題的解題策略三維目標(biāo)一、知識(shí)與技能。?;能運(yùn)用解題策略解決簡單的綜合應(yīng)用題。提高學(xué)生解決問題分析問題的能力??.二、過程與方法通過問題的探究,體會(huì)知識(shí)的類比遷移。以
2025-08-05 06:55
【總結(jié)】排列組合應(yīng)用題的解題技巧教學(xué)目的教學(xué)過程課堂練習(xí)課堂小結(jié)方法;用題的解題技巧;列組合問題.一復(fù)習(xí)引入二新課講授排列組合問題在實(shí)際應(yīng)用中是非常廣泛的,并且在實(shí)際中的解題方法也是比較復(fù)雜的,下面就通過一些實(shí)例來總結(jié)實(shí)際應(yīng)用中的解題技巧.例題1
2025-10-31 13:22
【總結(jié)】排列組合練習(xí)題用2,6,8三個(gè)數(shù)能組成哪幾個(gè)不同的兩位數(shù)?用0,3,9三個(gè)數(shù)能組成哪幾個(gè)不同的兩位數(shù)?用1,4,7能組成哪幾個(gè)不同的三位數(shù)?用3,6,9能組成哪幾個(gè)不同的三位數(shù)?排列組合練習(xí)題由3,5,0,6共四張卡片,你能擺出最大的兩位數(shù)和最小的兩位數(shù)嗎?它們的和是(),差是().有4,6,8
2025-08-05 08:17
【總結(jié)】解排列組合應(yīng)用題的策略排列組合問題是高考的必考題,它聯(lián)系實(shí)際生動(dòng)有趣,但題型多樣,思路靈活,不易掌握,實(shí)踐證明,掌握題型和解題方法,識(shí)別模式,熟練運(yùn)用,是解決排列組合應(yīng)用題的有效途徑;下面就談一談排列組合應(yīng)用題的解題策略.1.相鄰問題捆綁法:題目中規(guī)定相鄰的幾個(gè)元素捆綁成一個(gè)組,當(dāng)作一個(gè)大元素參與排列.例1.五人并排站成一排,如果必須
2025-06-07 22:44
【總結(jié)】《組合數(shù)學(xué)》第一章組合數(shù)學(xué)基礎(chǔ)第1章組合數(shù)學(xué)基礎(chǔ)1.排列組合的基本計(jì)數(shù)問題2.多項(xiàng)式系數(shù)的計(jì)算及其組合意義3.排列組合算法緒論(一)背景起源:數(shù)學(xué)游戲幻方問題:給定自然數(shù)1,2,…,n2,將其排列成n階方陣,要求每行、每列和每條對(duì)角線上n個(gè)數(shù)字之和都相等。這樣的n階方陣稱為n階幻方
2025-07-24 23:18
【總結(jié)】排列組合,1,2,3,4,5可以組成多少個(gè)沒有重復(fù)數(shù)字五位奇數(shù).解:由于末位和首位有特殊要求,應(yīng)該優(yōu)先安排,以免不合要求的元素占了這兩個(gè)位置.先排末位共有然后排首位共有最后排其它位置共有由分步計(jì)數(shù)原理得練習(xí)題:7種不同的花種在排成一列的花盆里,若兩種葵花不種在中間,也不種在兩端的花盆里,問有多少不同的種法?
2025-08-05 18:16
【總結(jié)】解排列問題的常用技巧解排列問題的常用技巧解排列問題,首先必須認(rèn)真審題,明確問題是否是排列問題,其次是抓住問題的本質(zhì)特征,靈活運(yùn)用基本原理和公式進(jìn)行分析解答,同時(shí),還要注意講究一些基本策略和方法技巧,使一些看似復(fù)雜的問題迎刃而解。下面就不同的題型介紹幾種常用的解題技巧。總的原則—合理分類和準(zhǔn)確分步
2025-07-23 12:24
【總結(jié)】1排列組合習(xí)題課2一復(fù)習(xí)引入二新課講授排列組合問題在實(shí)際應(yīng)用中是非常廣泛的,并且在實(shí)際中的解題方法也是比較復(fù)雜的,下面就通過一些實(shí)例來總結(jié)實(shí)際應(yīng)用中的解題技巧.3從n個(gè)不同元素中,任取m個(gè)元素,按照一定的順序排成一列,叫做從n個(gè)不同元素中取出m個(gè)元素的一個(gè)排列.:從n
2025-08-05 06:17
【總結(jié)】第一篇:排列組合典型例題 典型例題一 例1用0到9這10個(gè)數(shù)字.可組成多少個(gè)沒有重復(fù)數(shù)字的四位偶數(shù)? 分析:這一問題的限制條件是:①?zèng)]有重復(fù)數(shù)字;②數(shù)字“0”不能排在千位數(shù)上;③個(gè)位數(shù)字只能是0...
2025-10-12 11:00
【總結(jié)】排列組合常見題型及解題策略一.可重復(fù)的排列求冪法:重復(fù)排列問題要區(qū)分兩類元素:一類可以重復(fù),另一類不能重復(fù),把不能重復(fù)的元素看作“客”,能重復(fù)的元素看作“店”,則通過“住店法”可順利解題,在這類問題使用住店處理的策略中,關(guān)鍵是在正確判斷哪個(gè)底數(shù),哪個(gè)是指數(shù)【例1】(1)有4名學(xué)生報(bào)名參加數(shù)學(xué)、物理、化學(xué)競賽,每人限報(bào)一科,有多少種不同的報(bào)名方法?(2)有4名學(xué)生參加爭奪數(shù)學(xué)、
2025-08-04 18:28