【正文】
拐點(diǎn)的判別及其在情報(bào)學(xué)中的應(yīng)用摘 要本文以實(shí)數(shù)集R連續(xù)的七大定理:單調(diào)有界原理(公理)。閉區(qū)間套定理。確界定理。有限覆蓋定理。致密性定理。柯西收斂準(zhǔn)則(完備性定理)。戴德金分割定理為理論依據(jù)應(yīng)用極限的研究方法提出拐點(diǎn)的不同定義,并對(duì)不同定義進(jìn)行分析,進(jìn)而給出了拐點(diǎn)的一個(gè)確切定義,在此基礎(chǔ)上應(yīng)用拐點(diǎn)定義判別了一些分段函數(shù)、初等函數(shù)以及由參數(shù)方程確定的函數(shù)的拐點(diǎn).任何一個(gè)數(shù)學(xué)概念的給出都是其該數(shù)學(xué)概念的充分必要條件,那么對(duì)于拐點(diǎn)這一數(shù)學(xué)概念來(lái)說(shuō)當(dāng)然也不例外,從拐點(diǎn)的定義出發(fā)可以推出拐點(diǎn)的一系列充分條件和必要條件,它們作為定理當(dāng)然需要嚴(yán)格的證明,在給出拐點(diǎn)的定義及其判別法之后,:,從而起到最優(yōu)化的作用.最后,在研究一系列拐點(diǎn)的理論基礎(chǔ)知識(shí)后,重點(diǎn)討論拐點(diǎn)在生活中的運(yùn)用,其中最為重要的是拐點(diǎn)在情報(bào)學(xué)中的應(yīng)用,其中有:拐點(diǎn)的情報(bào)學(xué)意義和決策支持價(jià)值,以及邏輯曲線的拐點(diǎn)公式.關(guān)鍵詞:拐點(diǎn)。導(dǎo)數(shù)。極點(diǎn)。凹凸性。情報(bào)學(xué)ABSTRACTBased on the continuous seven theorems in the set of real numbers(R)—monotone bounded principle (axioms)。 closed interval theorem。 supremo theorem。 finite covering theorem。 pact theorem。 Cauchy convergence criteria(pleteness theorem)。 Dedekin partition theorem—and the method of limit theory, I put forward different definitions of inflection point and analyze them. Then, I get the accurate definition and discriminate other inflection points, such as piecewise function, elementary function and the function defined by parametric equations of inflection.Any mathematical concept is the necessary and sufficient condition for itself. For the inflection point, there is no exception. From the definition of inflection point, we can interfere a series of necessary and sufficient conditions. Inevitably, these conditions need strict proofs. Meanwhile, given the definition of inflection point and its discrimination method, it is very necessary to make a further discussion about the contact between inflection point and pole. Namely, for a derivative function, the inflection point is the pole. In this series of theoretical knowledge of the inflection point, the most important is how to use the most appropriate method to determine whether a point is the the inflection point of a function if given a specific function and thus realize optimization. Finally, after a series of research on theory knowledge of inflection point, we mainly talk about its uses, of which the most important is the application in Information Science including the significance and decision value in Information Science as well as the inflection point formula of logistic curve. Key words: turning point。derivative。 poles。convexity。 Information Science 目 錄 引 言 1 第1章 拐點(diǎn)的基本概念 2 預(yù)備知識(shí) 2 拐點(diǎn)的定義 2 第2章 應(yīng)用拐點(diǎn)的定義求函數(shù)的拐點(diǎn) 6 應(yīng)用拐點(diǎn)的定義求分段函數(shù)的拐點(diǎn) 6 應(yīng)用拐點(diǎn)的定義求初等函數(shù)的拐點(diǎn) 6 應(yīng)用拐點(diǎn)的定義求由參數(shù)方程確定的函數(shù)的拐點(diǎn) 8 第3章 拐點(diǎn)的判定定理 10 拐點(diǎn)的必要條件 10 拐點(diǎn)的第一充分條件 10 拐點(diǎn)的第二充分條件 11 拐點(diǎn)的第三充分條件 14 拐點(diǎn)的第四充分條件 15 拐點(diǎn)的第五充分條件 16 第4章 拐點(diǎn)與極點(diǎn)的一般判定定理 18 拐點(diǎn)與極點(diǎn)的第一充分條件 18 拐點(diǎn)與極點(diǎn)的第二充分條件 19 拐點(diǎn)與極點(diǎn)的第三充分條件 20 第5章 拐點(diǎn)與極點(diǎn)的特殊判定定理及其聯(lián)系 22 極點(diǎn)的特殊判定定理 22 拐點(diǎn)的特殊判定定理 22 拐點(diǎn)與極點(diǎn)的聯(lián)系 25 第6章 拐點(diǎn)在情報(bào)學(xué)中的應(yīng)用 26 拐點(diǎn)的情報(bào)學(xué)意義 26 拐點(diǎn)的決策支持價(jià)值 27 情報(bào)學(xué)中邏輯曲線的求拐點(diǎn)公式 27 結(jié)束語(yǔ) 29 參考文獻(xiàn) 30 謝 辭 31 引 言大學(xué)數(shù)學(xué)中數(shù)學(xué)分析是一門很重要的基礎(chǔ)課程,在自然課程中占有絕對(duì)基礎(chǔ)地位,而微積分又是數(shù)學(xué)分析中的基本內(nèi)容,微分學(xué)則又是微積分的重要組成部分,而導(dǎo)數(shù)又是微分學(xué)中的基本概念之一,極限又是研究導(dǎo)數(shù)的重要工具,因此呢,研究函數(shù)的收斂與發(fā)散、連續(xù)與一致連續(xù)、可導(dǎo)性、可微性等等,在函數(shù)的這些形態(tài)中,研究它所具有一類共同性質(zhì)的點(diǎn)——:樓市出現(xiàn)拐點(diǎn),股市出現(xiàn)