【總結】第一篇:正弦定理和余弦定理練習題 【正弦定理、余弦定理模擬試題】 : ,a=23,b=22,B=45°,則A為() °或120°°°或150°° sinAcosB ,若=,則DB=() ...
2025-09-27 07:29
【總結】第一篇:例談正弦定理、余弦定理的應用 龍源期刊網://. 例談正弦定理、余弦定理的應用 作者:姜如軍 來源:《理科考試研究·高中》2013年第08期 答:km/h,實際行駛方向與水流方向約成...
2025-09-24 18:48
【總結】正弦定理與余弦定理的綜合應用 (本課時對應學生用書第 頁) 自主學習 回歸教材 1.(必修5P16練習1改編)在△ABC中,若sinA∶sinB∶sinC=7∶8∶13,則cosC...
2025-11-08 22:01
【總結】正弦余弦定理證明教案【基礎知識精講】、三角形面積公式正弦定理:在一個三角形中,各邊和它所對角的正弦的比相等,并且都等于該三角形外接圓的直徑,即:===2R.面積公式:S△=bcsinA=absinC=acsinB.變形:(1)a=2RsinA,b=2RsinB,c=2RsinC(2)sinA∶sinB∶sinC=a∶b∶c(3)sinA=,sinB=,sinC=.
2025-04-17 04:49
【總結】第一篇:§正弦定理、余弦定理的應用(教案) 響水二中高三數學(理)一輪復習教案第五編平面向量、解三角形主備人張靈芝總第25期 §正弦定理、余弦定理的應用 基礎自測 ,在A處測得同一半平面方向的...
2025-09-24 13:37
【總結】第一篇:《正弦定理和余弦定理》測試卷 《正弦定理和余弦定理》學習成果測評 基礎達標: △ABC中,a=18,b=24,∠A=45°,此三角形解的情況為() 2.在△ABC 中,若a=2,...
2025-09-24 14:27
【總結】第一篇: 教學設計示例(第一課時) 一、教學目標 1.掌握正弦定理及其向量法推導過程; 2.掌握用正弦定理與三角形內角和定理解斜三角形的兩類基本問題. 二、教學重點正弦定理及其推導過程,正弦...
2025-09-27 04:13
【總結】正弦定理練習題1.在△ABC中,∠A=45°,∠B=60°,a=2,則b等于( )A. B.C.D.22.在△ABC中,已知a=8,B=60°,C=75°,則b等于( )A.4B.4C.4D.3.在△ABC中,角
2025-06-28 04:46
【總結】第一篇:正弦定理和余弦定理2 大毛毛蟲★傾情搜集★精品資料 第一章 解三角形 § 班級 姓名 學號 得分 一、選擇題 1.在△ABC中,已知b=43,c=23,∠A=120°,則a...
2025-09-27 07:15
【總結】第一篇:正弦定理和余弦定理教學設計教案 教學準備 知識目標:理解并掌握正弦定理,能初步運用正弦定理解斜三角形; 技能目標:理解用向量方法推導正弦定理的過程,進一步鞏固向量知識,體現向量的工具...
2025-09-24 10:39
【總結】第一篇:正弦定理與余弦定理教案 正弦定理與余弦定理教案-------鄂倫春中學祁永臣 教學要求: 教學要求:通過對任意三角形邊長和角度關系的探索,掌握正弦定理的內容及其證明方法;::: 一...
2025-09-27 07:01
【總結】第八節(jié)正、余弦定理的應用基礎梳理解三角形(1)解三角形:__________________________________________________________________________________________________________________________________________________.
2025-11-03 16:42
【總結】例3AB是底部B不可到達的一個建筑物,A為建筑物的最高點,設計一種測量建筑物高度AB的方法分析:由于建筑物的底部B是不可到達的,所以不能直接測量出建筑物的高。由解直角三角形的知識,只要能測出一點C到建筑物的頂部A的距離CA,并測出由點C觀察A的仰角,就可以計算出建筑物的高。所以應該設法借助解三角形的知識測出CA的長。)
2025-08-16 01:09
【總結】第一篇:正弦余弦定理典型題例 7月13-23作業(yè)早知道整體介紹必修五作業(yè)題備注7月13日專題一必修五整體把握,請您給出等差數列的起始課的教學設計,并突出您的創(chuàng)新點;,設計一個數列應用的案例(可以是一...
【總結】第一篇:正弦定理與余弦定理習題總結 正弦定理與余弦定理 ab :sinA=sinBc=sinC =2R,+c2-a :a=b+c-2bccosA,b=a+c-2accosB,cosA= △...