freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

全等三角形問題中常見的8種輔助線的作法(有答案)(已修改)

2025-07-01 22:58 本頁面
 

【正文】 全等三角形問題中常見的輔助線的作法(有答案)總論:全等三角形問題最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,構(gòu)造二個角之間的相等【三角形輔助線做法】圖中有角平分線,可向兩邊作垂線。 也可將圖對折看,對稱以后關(guān)系現(xiàn)。角平分線平行線,等腰三角形來添。 角平分線加垂線,三線合一試試看。線段垂直平分線,常向兩端把線連。 要證線段倍與半,延長縮短可試驗。 三角形中兩中點,連接則成中位線。 三角形中有中線,延長中線等中線。“三線合一”法:遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題:倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形“截長法”或“補短法”: 遇到有二條線段長之和等于第三條線段的長,:有一個角為60度或120度的把該角添線后構(gòu)成等邊三角形、60度的作垂線法:遇到三角形中的一個角為30度或60度,可以從角一邊上一點向角的另一邊作垂線,目的是構(gòu)成306090的特殊直角三角形,然后計算邊的長度與角的度數(shù),這樣可以得到在數(shù)值上相等的二條邊或二個角。從而為證明全等三角形創(chuàng)造邊、角之間的相等條件。:遇到等腰直角三角形,正方形時,或306090的特殊直角三角形,或406080的特殊直角三角形,常計算邊的長度與角的度數(shù),這樣可以得到在數(shù)值上相等的二條邊或二個角,從而為證明全等三角形創(chuàng)造邊、角之間的相等條件。常見輔助線的作法有以下幾種:最主要的是構(gòu)造全等三角形,構(gòu)造二條邊之間的相等,二個角之間的相等。1) 遇到等腰三角形,可作底邊上的高,利用“三線合一”的性質(zhì)解題,思維模式是全等變換中的“對折”法構(gòu)造全等三角形.2) 遇到三角形的中線,倍長中線,使延長線段與原中線長相等,構(gòu)造全等三角形,利用的思維模式是全等變換中的“旋轉(zhuǎn)” 法構(gòu)造全等三角形.3) 遇到角平分線在三種添輔助線的方法,(1)可以自角平分線上的某一點向角的兩邊作垂線,利用的思維模式是三角形全等變換中的“對折”,所考知識點常常是角平分線的性質(zhì)定理或逆定理.(2)可以在角平分線上的一點作該角平分線的垂線與角的兩邊相交,形成一對全等三角形。(3)可以在該角的兩邊上,距離角的頂點相等長度的位置上截取二點,然后從這兩點再向角平分線上的某點作邊線,構(gòu)造一對全等三角形。4) 過圖形上某一點作特定的平分線,構(gòu)造全等三角形,利用的思維模式是全等變換中的“平移”或“翻轉(zhuǎn)折疊”5) 截長法與補短法,具體做法是在某條線段上截取一條線段與特定線段相等,或是將某條線段延長,是之與特定線段相等,再利用三角形全等的有關(guān)性質(zhì)加以說明.這種作法,適合于證明線段的和、差、倍、分等類的題目.6) 已知某線段的垂直平分線,那么可以在垂直平分線上的某點向該線段的兩個端點作連線,出一對全等三角形。特殊方法:在求有關(guān)三角形的定值一類的問題時,常把某點到原三角形各頂點的線段連接起來,利用三角形面積的知識解答.一、倍長中線(線段)造全等例(“希望杯”試題)已知,如圖△ABC中,AB=5,AC=3,則中線AD的取值范圍是_________.例如圖,△ABC中,E、F分別在AB、AC上,DE⊥DF,D是中點,試比較BE+CF與EF的大小.例如圖,△ABC中,BD=DC=AC,E是DC的中點,求證:AD平分∠BAE.應(yīng)用:(09崇文二模)以的兩邊AB、AC為腰分別向外作等腰Rt和等腰Rt,連接DE,M、N分別是BC、DE的中點.探究:AM與DE的位置關(guān)系及數(shù)量關(guān)系.(1)如圖① 當(dāng)為直角三角形時,AM與DE的位置關(guān)系是 ,線段AM與DE的數(shù)量關(guān)系是 ;(2)將圖①中的等腰Rt繞點A沿逆時針方向旋轉(zhuǎn)(090)后,如圖②所示,(1)問中得到的兩個結(jié)論是否發(fā)生改變?并說明理由.二、截長補短如圖,中,AB=2AC,AD平分,且AD=BD,求證:CD⊥AC如圖,AD∥BC,EA,EB分別平分∠DAB,∠CBA,CD過點E,求證。AB=AD+BC。 如圖,已知在內(nèi),,P,Q分別在BC,CA上,并且AP,BQ分別是,的角平分線。求證:BQ+AQ=AB+BP如圖,在四邊形ABCD中,BC>BA,AD=CD,BD平分,求證: 如圖在△ABC中,AB>AC,∠1=∠2,P為AD上任意一點,求證。ABAC>PBPC應(yīng)用:三、平移變換例1 AD為△ABC的角平分線,直線MN⊥,△ABC周長記為,△>.例2 如圖,在△ABC的邊上取兩點D、E,且BD=CE,求證:AB+ACAD+AE.四、借助角平分線造全等如圖,已知在△ABC中,∠B=60176。,△ABC的角平分線AD,CE相交于點O,求證:OE=OD如圖,△ABC中,AD平分∠BAC,DG⊥BC且平分BC,DE⊥AB于E,DF⊥AC于F. (1)說明BE=CF的理由;(2)如果AB=
點擊復(fù)制文檔內(nèi)容
黨政相關(guān)相關(guān)推薦
文庫吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號-1